
 BL TAB

TAB CMP r0, #0

 BEQ SUB0

 CMP r0, #1

 BEQ SUB1

 ………………..

 CMP r0, #9

 BEQ SUB9

National Sun Yat-Sen University
ASSEMBLY LANGUAGE AND MICROCOMPUTER

Final Exam
1:15-3:15 PM Jan 13 2011

Name:

Note: Although there are more than 100 points for this exam, the maximum score you can get is 100

points.

1. Refer to the following 3-stage (fetch, decode, execute) ARM7

pipeline data path. (14 pts)

(a) Find out the number of cycles it will takes to run the ARM

instruction ADD r0, r1, r2 LSL #12 at the execution stages.

(3 pts)

(b) Show the datapath activity at each cycle. (5 pts)

(c) Fill the following immediate field of the instruction used to

return from the undefined instruction trap. You have to

explain the reason. (6 pts)

SUBS pc, r14,

2. Write a short ARM code to set the N flag in CPSR to 1. (5 pts)

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

3. Answer the following short questions: (9 pts)

(a) Explain what “caller-saved” register variables mean, and list these registers defined in APCS

(ARM Procedure Call Standard) . (4 pts)

(b) Describe how to use SWP instruction in a program to realize the check-and-lock operation of a

binary semaphore. (5 pts)

4. Write an ARM code to realize a C-subroutine int strcpy(char *src, char *dst) which copies a string

from the memory location pointed by src to another location pointed by dst. The return value of this

subroutine is the length of the string that has been copied. Your program has to follow the APCS

standard. (14 pts)

5. For the following simple assembly code: (13 pts)

(a) Explain the function of this code. (5 pts)

(b) Describe the main drawback of this code. Write a more

efficient code than can implement the same function. (8 pts)

address register

increment

registers Rd

Rn

P

as ins.

as instruction

mult

data out data in i. pipe

[7:0]

CODE 32

 BLX r0

CODE 16

Thumb ADD r1, #1

 BX lr
MOV r3, #0

Loop SUBS r0, r0, r1

 ADDGE r3, r3, #1

BGE Loop

 ADD r2, r0, r1

6. The instruction coding of Thumb data processing instructions is shown in the following figure. (21 pts)

(a) Check if the following Thumb instruction syntax is correct. If not, you should also explain why.

(12 pts)

(1) ADD r13, r1, #21

(2) MOV r0, r9

(3) SUBEQ r1, r2, r3

(4) CMP r4, #43

(b) Write the equivalent 32-bit ARM instruction for the following Thumb instruction: (9 pts)

(1) PUSH {r4, r0, lr}

(2) SUB r3, #52

(3) LSR r1, r3, #3

Rd

15 10 9 8 6 5 3 2 0

0 0 0 1 1 0 A

Rd

15 10 9 8 6 5 3 2 0

0 0 0 1 1 1

#imm8

15 13 12 11 10 8 7 0

0 0 1 Op

Rn

15 13 12 11 10 6 5 3 2 0

0 0 0 Rd

(1) ADD|SUB Rd,Rn,Rm

(2) ADD|SUB Rd,Rn,#imm3

(3) <Op> R d/Rn ,#imm8

(4) LSL|LSR|ASR Rd,Rn,#shift

Op

15 10 9 6 5 3 2 0

0 1 0 0 0 0

Rd/Rn

15 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 M

(5) <Op> Rd/Rn,Rm/Rs

(6) ADD|CMP|MOV Rd/Rn,Rm

RnRm

Rn#imm3A

Rd/Rn

Op #sh

Rm/Rs Rd/Rn

Rm

#imm8

15 12 11 10 8 7 0

1 0 1 0 R

15 8 7 6 0

1 0 1 1 0 0 0 0 A #imm7

(7) ADD Rd,SP|PC,#imm8

(8) ADD|SUB SP,SP,#imm7

Rd

DOp

7. For the thumb instruction, (10 pts)

(c) Fill a correct instruction in the empty box in the program

shown in the right such that it can call the subroutine

written in Thumb instruction correctly. (4 pts)

(d) Translate the following ARM code into the THUMB code

using the fewest number of instructions such that it can

perform the division correctly. (6 pts)

8. Find out the 32-bit instruction coding for the following ARM instructions based on the given coding

information. (The coding P, U, W, L bits in multiple-register-transfer instructions is the same as

single-register transfer instructions.) (12 pts)

(a) LDRB r9, [r1, r7, LSR #2]!

(b) STRGE r1, [r2], #-8

(c) LDMFD sp!, [r3,r1,r10-r12]

Coding table of Shift Operation
00 LSL 01 LSR 10 ASR 11 ROR

9. Figure 7(b) shows the partial assembly code corresponding to the original C code shown in Fig. 7(a).

Complete the assembly code by filling the seven space regions. (10 pts)

Opcode
[31:28]

Interpretation

0000 Equal / equals zero
0001 Not equal
0010 Carry set / unsigned higher or same
0011 Carry clear / unsigned lower
0100 Minus / negative
0101 Plus / positive or zero
0110 Overflow
0111 No overflow
1000 Unsigned higher
1001 Unsigned lower or same
1010 Signed greater than or equal
1011 Signed less than
1100 Signed greater than
1101 Signed less than or equal
1110 Always
1111 Never (do not use!)

