DISCRETE MATHEMETICS MID-TERM EXAM 2010/11/15

- 1. [10%] Determine the number of integer solutions to the equation $x_1 + x_2 + ... + x_6 + x_7 = 10$, $0 \le x_i$, $1 \le i \le 6$, $0 < x_7$.
- 2. [10%] For any universe \mathcal{U} and any sets $A, B \subseteq \mathcal{U}$, which following statements are equivalent and explain why.
 - (a) $\overline{A} \subseteq B$ (b) $A \bigcup B = B$ (c) $A \cap B = A$
- 3. [10%] For $A = \{1, 2, 3, 6\}$.

(a) How many relations on A are antisymmetric ?

- (b) If |A| = n > 0, how many relations on *A* are antisymmetric ?
- 4. [10%] Let $M = (S, \varphi, o, v, \omega)$ be a finite state machine where $S = \{s_0, s_1\}$ $\varphi = \{00, 01, 10, 11\}, \quad o = \{0, 1\}, \text{ and } v, \omega \text{ are determined by Table 1.}$ Table 1:

	V				ω			
	00	01	10	11	00	01	10	11
<i>s</i> ₀	<i>s</i> ₀	<i>s</i> ₀	s_0	s_1	0	1	1	0
<i>s</i> ₁	<i>s</i> ₀	s_1	s_1	s_1	1	0	0	1

Draw the state diagram for this finite state machine.

5. [10%] Let |A| = 6.

(a) How many closed binary operations are there on *A*?

(b) How many of these closed binary operations are commutative?

- 6. [10%] Determine the greatest common divisor of 231 and 1820 and express the result as a linear combination of these integers. (Use the Euclidean Algorithm)
- 7. [10%] For each of the following functions g: R→R, determine whether the function is one-to-one and whether it is onto. If the function is not onto, determine the range g(R). (a) g(x) = x + 7 (b) g(x) = x² + x
- 8. [10%] For each of the following statements about relations on a set A, where |A| = n, determine whether the statement is true or false. If it is false, give a counterexample.
 - (a) R_1, R_2 are relations on A, $R_2 \supseteq R_1$, and R_2 is antisymmetric. $\Rightarrow R_1$ is antisymmetric.

(b) R_1, R_2 are relations on $A, R_2 \supseteq R_1$, and R_2 is transitive. $\Rightarrow R_1$ is transitive.

- 9. [10%] Let $S = \{3, 7, 11, 15, 19, \dots, 95, 99, 103\}$. How many elements must we select from *S* to insure that there will be at least two whose sum is 110?
- 10. [10%] An auditorium has a seating capacity of 800. How many seats must be occupied to guarantee that at least two people seated in the auditorium have the same first and last initials?