1. (10%) Please answer the following questions.

(a) What is asynchronous I/O? (5%)
(b) If asynchronous I/O is performed on a high-speed I/O device, the CPU will need 2 microseconds (for example) to respond to each interrupt, with interrupts arriving from the I/O device at every 4 microseconds (for example). That would not leave much time for process execution. How do modern computer systems solve this problem? (5%)
2. (10%) Consider reading a file using a single-threaded file server and a multithreaded server. It takes 12 msec to get a request for work, dispatch it, and do the rest of the necessary processing, assuming that the data needed are in the block cache. If a disk operation is needed, as is the case one-third of the time an additional 24 msec is required during which time the thread sleeps. How many requests/sec can the server handle if it is single-threaded? How many requests/sec can the server handle if it is multithreaded?
3. (15%) The dining-philosophers problem is considered to be a classic synchronization problem. It is a simple representation of the need to allocate several resources among several processes in a deadlock-and starvation-free manner. One simple solution is to represent each chopstick by a semaphore. A philosopher tries to grab the chopstick by executing wait operation on that semaphore; he releases his chopsticks by executing the signal operation on the appropriate semaphores. Thus, the shared data are semaphore chopstick; where all the elements of chopstick are initialized to 1. The structure of philosopher i is shown as the following:
do{
wait(chopstick[i]);
wait(chopstick[i+1]% 5)；
 …..
Eat
 …..
signal(chopstick[i])；
signal(chopstick[(i+1) % 5])；
 …..
Think
 …..
} while(1);
(a) Why we reject the above program codes to solve the dining-philosophers problem?(5%)

(b) Please show a correct program structure to solve the dining-philosophers problem using high-level synchronization construct monitor? (10%)
4. (15%) Spin locking is a way to implement semaphores. Please use the concepts of spin locking to implement the wait and signal operations of binary semaphores. You MUST ensure that no starvation and no deadlock could occur.
5. (15%) Suppose that a disk drive has 5000 cylinders, numbered from 0 to 4999. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125. The queue of pending requests, in FIFO order, is 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests, for each of the following disk scheduling algorithms?

 (a) FCFS (b) SSTF (c) SCAN (d) LOOK (e) C-SCAN

6. (10%) Please answer the following question.
(a) The MS-DOS-FAT-16 table contains 64K entries.
What would the largest MS-DOS file have if all disk blocks are 2-K bytes? (5%)
(b) Consider an UNIX-like file system using i-node scheme. What is the maximum file size if an i-node contains 10 direct entries, and one single, double, and triple indirect entry each?
Assume each indirect block contains 10 entries and all disk blocks are 4 K bytes. (5%)
7. (15%) The following is a two-process bakery algorithm that is a solution to the critical section problem. The common data structures are:

var choosing: array[0…1] of boolean;
number: array[0…1] of integer;

Initially, these data structures are initialized to False and 0, respectively. For convenience, we define the following notation:

 1.
[image: image1.wmf](,)(,)

abcd

<

 if and only if
[image: image2.wmf]ac

<

 or
[image: image3.wmf][()()]

acandbd

=<

.
 2.
[image: image4.wmf]max(,)

ab

 returns an integer that is the maximum of a and b.
 The structure of process Pi is:

 repeat

 1 choosing[i] :=true;

 2 number[i] : =max(number[i], number[j])+1;

 3 choosing[i]:=false;

 4 while choosing[j] do no-op;

 5 while number[j]= 0 and (number[j],j)<(number[i],i) do no-op

 6 ……Critical Section……

 7 number[i] :=0

 until false;

 In the code above, if Pi is P0 then (i=0) and (j=1). Likewise, if Pi is P1 then (i=1) and (j=0).
(a) Give a sequence of events of the processes executing the two-process bakery algorithm in which both processes obtain the same value for number when they complete line 2. (5 %)

(b) Suppose we modify the algorithm by deleting lines 1, 3 and 4. Let’s call the modified code bad-bakery algorithm. Give a sequence of events of the processes executing the bad-bakery algorithm in which P1 enters critical section first, and at a later time while P1 remains in critical section P0 also enters critical section.
8. (10%) Please answer the following questions.
(a) Consider a system that supports the strategies of contiguous, linked, and indexed allocation, What criteria should be used in deciding which strategy is best utilized for a particular file? (5 %)

(b) A UNIX i-node has 10 disk addresses for data blocks, as well as the addresses of single, double, and triple indirect blocks. If each of these holds 512 disk addresses, what is the size of the largest file that can be handled, assuming that a disk block is 2K? (5%)
_1245197564.unknown

_1245197609.unknown

_1245197625.unknown

_1245197503.unknown

