98 LEEF 2 BMBMEHFHER o LML

1. (18%) Consider the execution of the following loop, which increments each element of an
integer array, on a two-issue processor, once without speculation and once with speculation:

Loop: LD R2,0{R1) iR2=array element
DADDIU R2,R2#1 ;increment R2
SD R2,0(R1) :store result
DADDIU R1,R1#8 ;increment pointer
BNE R2,R3,LOOP ;eranch if not last element

Assume that there are separate integer functional units for effective address calculation, for
ALU operations, and for branch condition evaluation. Create a table for the first three
iterations of this loop for both processots. Assume that up to two instructions of any type can
commit per clock. Table 1 shows the time of issue, execution, and writing result for a
two-issue processor without speculation. Please fill in Table 2 with the time of execution and
writing result for a two-issue processor with speculation.

Table 1
Executes Memory .
Issues at at access at | Write CDB
clock clock clock at clock
Iteration , cycle cycle cycle cycle
number | Instructions number number namber number | Comment
1 LD R2,0(R1) 1 2 3 4 Firstissue
I DADDIU R2R2#1 1 5 6 Wait for LW
1 sD R2,0{R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,48 2 3 4 Execute directly
1 BNE R2,R3,LO0OP 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,RZ# 4 11 12 Wait for | W
2 sD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE R2,R3,LOOP 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2R2# 7 17 18 Wait for LW
3 SD R2,0(R1} 8 15 19 Wait for DADDIU
-3 DADDIJ R1,Ri#8 8 14 15 Wait for BNE
3 BNE R2,R3,LOOP 9 19 Wait for DADDIU
Table 2
Issues at Read
. clock Executes accessat | Write CDB | Commits at
Iteration . cycle - at clock clock at clock clock
number | Instructions number number number number number
1 LD R2,0(R1) 1
1 DADDIU R2,R2,#1 I
1 sD R2,0{R1) 2
1 DADDIU R1,R1#8 2
1 BNE R2,R3,LOOP 3
2 LD R2,0(R1) 4
2 DADDIU R2,R2,# 4
2 SD R2,0(R1) 5
2 DADDIU Rf1,Ri1#8 5
2 BNE R2,R3,LO0P 6
3 LD R20(R1) 7
3 DADDIU R2,R2#1 7
3 SD R2,0{R1)]
3 DADDIU R{,R1,#8 8
3 BNE R2,R3,LO0OP 9 ><

@ LUV I3 LG W 4dUUIE [EICICICE L0 4 TemOote memory. ror this application, assume that all the
references except those involving communication hit in the local memory hierarchy, which is
slightly optimistic. Processors are stalled on a remote request, and the processor clock rate is 2
GHz. If the base CPI (assuming that all references hit in the cache) is 0.5, how much faster is
the multiprocessor if there is no communication versus if 0.3% of the instructions involve a
remote communication reference?

3.(18%) The simple, bus-based multiprocessor illustrated in Fig, | represents a commonly
implemented symmetric shared-memory architecture. Each processor has a single, private
cache with coherence maintained using the snooping coherence protocol of Fig, 2. Each cache
is directed-mapped, with four blocks each holding two words. The cache-address tag contains
the full address and each word shows only two hex characters, with the least significant word
on the right. The coherence states arc denoted M, 8, and I for Modified, Shared, and Invalid.

The performance of a snooping cache-coherent multiprocessor depends on many detailed

implementation issues that determine how quickly a cache responds with data in an exclusive

or M state block. For the multiprocessor illustrated in Fig. 1, consider the execution of a

sequence of operations on a single CPU where

m CPU read and write hits generate no stall cycles.

m CPU read and write misses generate Nimemory and Negene stall cycles if satisfied by memory
and cache, respectively.

® CPU write hits that generate an invalidate incur Nipyajigace stall cycles.

 a writeback of a block, either due to a conflict or another processor’s request to an exclusive
block, incurs an additional Nyrireback Stall cycles.

Consider two implementations with different performance characteristics summarized in Table
3. Moreover, a sequence of one or more CPU operations is specified in the following form:
P# <op> <address> [<« <value>]

where P# designates the CPU (e.g., P0), <op> is the CPU operation (e.g., read or write),
<address> denotes the memory address, and <value> indicates the new word to be assigned on
a write operation.

Consider the following sequence of operations assuming the initial cache state in Fig. 1. For
simplicity, assume that the second operation begins after the first completes (even though they
are on different processors):

Pl: read 110
P15: read 110

For Implementation 1, the first read generates 80 stall cycles because the read is satisfied by
P0’s cache. P1 stalls for 70 cycles while it waits for the block, and PO stalls for 10 cycles while
it writes the block back to memory in response to P1’s request. Thus the second read by P15
generates 100 stall cycles because its miss is satisfied by memory. Thus this sequence
generates a total of 180 stall cycles.

For the following sequences of operations, how many stall cycles are generated by each
implementation?
(I) PO: read 120
PO: read 128
PO: read 130
(2) PO: read 100

PO: write 108 <« 48
PO: write 130 <« 78
(3) Pl. read 120
Pl: read 128
P1: read 130
(4) PI1: read 100
Pl: write 108 <« 48
Pl: wiite 130 <« 78

Write-back block

Writo nuss
lor block

CPU write hit
CPU raad hit

Place write miss on bus

Extlugiva
(readwrita)

Invalidare far this bloch

Writa miss for tus block

/

CPU writa

CPU read

Fig. 2

Place writa miss on bus

- A o =)
& &7 & @
e & 3 Gl
c.é\d‘ & i & & v&@ N cP“?} v"&e N
Bo | 1| 100 [00}10 Bo| I | 100 [ooi10 oo Bo|s] 120 |oo0:z0
B1{S| 108 |00:08 B1|M| 128 [o0ie8 B1[S| 108 |ooios
B2fM| 110 |a0 30 B2 1|10 [00i10 B2| 1| 110 |00 10
B3| 1] 118 [o00i10 Ba|s| 118 [o0i18 831|118 [00i10
- y -
N A, L
F 3
Memory Address Data
100 |00 ! 00
108 | 00 ;08
110 | 00 :10
118 |00 18
120 |00 20
Fig. 1 128 |00 ;28
w0 [op]
CPU rand hit

Table 3
Parameter | Implementation1 | Implementation 2
Nmeamory 100 100
Ncache 70 130
Ninvatidae 15 15
Nmi!eback 10 10

4.(14%) Which has the lower miss rate: a 32 KB instruction cache with a 32 KB data cache or
a 64 KB unified cache? Use the miss rates in Table 4 to help calculate the correct answer,
assuming 40% of the instructions are data transfer instructions. Assume a hit takes 1 clock
cycle and the miss penalty is 100 clock cycles. A load or store hit takes 1 extra clock cycle on
a unified cache if there is only one cache port to satisfy two simultaneous requests {a structural
hazard). What is the average memory access time in each case? Assume write-through caches
with a write buffer and ignore stalls due to the write buffer.

Table 4: Miss per 1000 instructions
Size Instruction cache Data cache Unified cache
16 K 6 42 51
32K 2 40 43
64 K 1 36 40

4 WITLE-DaCK Cc4acne iat a0es WITIE allocate. 1he elements of a and b are & bytes long since they

are double-precision floating-point arrays. There are 3 rows and 100 columns for a and 101

rows and 3 columns for b. Let’s also assume they are not in the cache at the start of the

program. '

(1) For the code shown in Fig. 3, determine which accesses are likely to cause data cache
misses and calculate the number of data cache misses. (8%)

(2) If prefetch instructions are inserted as shown in Fig. 4 to reduce misses. Calculate the
number of prefetch instructions executed and the misses avoided by prefetching. (10%)

for{i=0; i<3 i=i+1) for(j=0; j<100; j=j+ 1}{
for(j=0; j<100; j=j+1) prefetch(b[j+71[0); /* b(j,0) for 7 iterations later */
afillj] = bljI[o] * bli+1][01; prefetch(a[01[j+7]; /* a(0,j} for 7 iterations later */
a[0][j1 = b{j](0] * b[j+1]{0L;};
Fig. 3 for(i=0; i<3; i=i+1)

for(j=0; j<100; j=j+1){
prefetch(a[il(j+7]; /* a(i,j) for +7 iterations */
a(ili] = b[j1[C] * b[j+1][0];}

Fig. 4

6.(12%) Suppose a processor sends 40 disk I/Os per second, these requests are exponentially

distributed, and the average service time of an older disk is 10 ms. Answer the following
questions:
(1) On average, how utilized is the disk? (4%)

(2) What is the average time spent in the queue? (4%)

(3) What is the average response time for a disk request, including the queuing time and disk
service time? (4%)

7.(10%) Please explain the differences in a processor’s ability to explbit the resources of a

superscalar for the following processor configurations (shown in Fig. 5): a superscalar with no

multithreading support, a superscatar with coarse-grained multithreading, a superscalar with
fine-grained multithreading, and a superscalar with simultaneous multithreading.

Issueslots —— g

Superscalar Coarse MT ' Fine MT

-sp——————- Time

Fig. 5

