1. (10%) Suppose we have a processor with a base CPI of 1.0, assuming all references hit in the primary cache, and a clock rate of 400 MHz. Assume a main memory access time of 100 ns, including all the miss handling. Suppose the miss rate per instruction at the primary cache is 10%. How much faster will the machine be if we add a secondary cache that has a 40-ns access time for either a hit or a miss and is large enough to reduce the miss rate to main memory to 2%?
2. A superscalar MIPS processor can issue two instructions per clock cycle. One of the instructions could be an integer or a branch instruction, and the other could be a FP instruction.
(1) Enumerate the possible extra resources required for extending a simple MIPS pipeline into the superscalar pipeline so that it wouldn't be hindered by structural hazards.  (5%)
(2) Unroll the following loop to make the loop contain four copies of the loop body, assuming R1 is initially a multiple of 32, which means that the number of loop iterations is a multiple of 4. Eliminate any obviously redundant computations and do not reuse any of the registers. Use the latencies (number of cycles between producing and consuming instruction) shown in Table 1 to schedule the unrolled loop and write the schedule result to Table 2.  (15%)


Loop:
L.D
F0, 0(R1)



ADD.D
F4, F0, F2




S.D
F4, 0(R1)




DADDUI
R1, R1, #-8




BNE
R1, R2, Loop


3. (10%) Several researchers have suggested that adding a register-memory addressing mode to a load-store machine might be useful. The idea is to replace sequence of 

                 LOAD   R1, 0(Rb)    /* R1 = MEM[0+Rb]  */

        ADD    R2, R2, R1   /* R2 = R2 + R1 */

   by 

        ADD     R2, 0(Rb)   /* R2 = R2 + MEM[0+Rb] */

Assume the new instruction will cause the clock cycle to increase by 10%. The new instruction affects only the clock cycle and not the CPI (cycles per instruction).

3.1 (5%) What percentage of the loads must be eliminated for the machine with the new instruction to have at least the same performance (assuming that 25% of the instruction mix is loads)?
3.2 (5%) Show a situation in multiple instruction sequence where a load of R1 followed immediately by a use of R1 (with some type of opcode) could not be replaced by a single instruction of the form proposed, assuming that the same opcode exists. 

4. (15%) Draw the implementation of a 4-way set-associative cache. The address word is 32-bit and the block size is 4 bytes. Remember to show the number of bits in all fields (valid, tag, data).

5. (1) (5%) Show why the following loop is not parallel.

for (i=2; i<100; i=i+1) {

a[i] = b[i] + a[i]; /* S1 */

c[i-1] = a[i] + d[i]; /* S2 */

a[i-1] = 2 * b[i]; /* S3 */

b[i+1] =2 * b[i]; /* S4 */

}

(3) (10%) Please describe and compare loop unrolling and software pipelining.
6. (10%) Suppose we have a deeply pipelined processor, for which we implement a branch-target buffer for the conditional branches only. Assume that the misprediction penalty is always 4 cycles and the buffer miss penalty is always 3 cycles. Assume 90% hit rate and 90% accuracy, and 15% branch frequency. How much faster is the processor with the branch-target buffer versus a processor that has a fixed 2-cycle branch penalty? Assume a base CPI without branch stalls of 1.
7. (10%) Here is a simple code fragment:
For(i=2;i<=100;i+=2)

 a[i] = a[50*i+1];

To use the GCD test, this loop must first be “normalized” – written so that the index starts at 1 and increments by 1 on every iteration. Write a normalized version of the loop (change the indices as needed), then use the GCD test to see if there is a dependence.

8. (10%) In systems with a write-through L1 cache backed by a write-back L2 cache instead of main memory, a merging write buffer can be simplified. Explain how this can be done. Are there situations where having a full write buffer (instead of the simple version you’ve just proposed) could be helpful?
Table 1

	Instruction producing result
	Instruction using result
	Latency in clock cycles

	FP ALU op
	Another FP ALU op
	3

	FP ALU op
	Store double
	2

	Load double
	FP ALU op
	1

	Load double
	Store double
	0


Table 2

	
	Integer instruction
	FP instruction
	Clock cycle

	Loop:
	
	
	1

	
	
	
	2

	
	
	
	3

	
	
	
	(
(
(


