Qualify Exam. (Computer Architecture)

1. (20%) The following table lists the SPECINTC2006 benchmarks running on a CPU.

Answer the following questions
Execution | Reference
Clock cycle time Time Time
(seconds x 10-?) | (seconds) | (seconds) | SPECratio

Instruction

Description count x 10°
Interpreted string processing | perl 2252 0.60 9770 19.2
Block-sorting bzip2 2390 0.70 9650 15.4
compression
GNU C compiler gee 794 1.20 0.376 358 8050 225
Combinatorial optimization mef 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.3786 527 10490 19.9
Search gene sequence hmmer 2616 0.80 0.376 500 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.3786 588 12100 20.7
Quantum computer libquantum 659 0.44 0.376 108 20720 190.0
simulation
Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 215
simulation library
Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalanchmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

1.1 (5%) What is the running frequency of the CPU?

1.2 (5%) Explain how the execution time in the table is calculated. Hint: the
execution time is calculated based on the information provided in the other
columns of the table.

1.3 (5%) Explain how the SPECratio in the table is calculated.

1.4 (5%) Explain the possible reasons why some CPI values are smaller than 1.

2. (20%) The following problems refer to the pipelined datapath shown below which

is a simplified version of MIPS pipeline.

IFAD IDVEX EX/MEM MEMMWE

4 — Add

Ackiness Raad
— Read
regissar 1 |
a H ¢ ool

Read

regisier 2
Ruglsters g o
Wirite: data 7

%

2

=

ul
| rageter
\Wirite. ¥ L
[ data a
18 sign- | 32
wtand

Instruction
memary




The problems assume that, of all the instructions executed in a processor, the
following fraction of these instructions have a particular type of RAW (Read-After-
Write) data dependence.

Tab. 1
EX to 1+
and MEM Other RAW
to 2nd Dependences
I 20% 5% 10% 10% 10%

The type of RAW data dependence is identified by the stage that produces the
result (EX or MEM) and the instruction that consumes the result (1% instruction
that follows the one that produces the result, 2" instruction that follows, or both).
We assume that the register write is done in the first half of the clock cycle and the
register reads are done in the second half of the clock cycle. Also, assume that the
CPI of the processor is 1 if there are no data hazard.

Assume that the following latencies for individual pipeline stages. For the EX
stage, latencies are given separately for a processor without forwarding and for a
processor with different kinds of forwarding.

Tab. 2

EX (FW
EX (FW from | from MEM/
EX/MEM only) | WB only)

‘ 150 ps | 100 ps 120 ps 150 ps 140 ps 130 ps 120 ps | 100 ps

2.1 (5%) Tab. 1 only shows the fraction for the 15t and 2" next instructions that follow
the instruction producing the results. Explain why it is not necessary to consider
the 3™ next instruction that follows the instruction producing the results. For
example, “EX to 3@ and “MEM to 3™ dependences are not counted.

2.2 (5%) If we do not use any forwarding, what fraction of cycles are we stalling due
to data hazard? Hint: dependences to the 1%t next instruction result in 2 stall cycles,
and the stall is also 2 cycles if the dependence is to both 15t and 2"¥ next instruction.
Dependences to only the 2" next instruction result in one stall cycle. Calculate the
CPI first, and then the fraction of stall cycles can be derived from the CPI.

2.3 (5%) If we use full forwarding (forward all results that can be forwarded), what
fraction of cycles are we stalling due to data hazard? Hint: with full forwarding, the
only RAW data dependences that cause stalls are those from the MEM stage of
one instruction to the 1% next instruction. Even this dependences causes only one
stall cycle.

2.4 (5%) For the given hazard probabilities and pipelined stage latencies, what is the
speedup achieved by adding full forwarding to a pipeline that had no forwarding?



Hint: compute CPI without forwarding and with full forwarding. Then compute the
clock cycle time in these two schemes. The execution time per instruction is the

product of the above two values.

3. (20%) Cache Operation
Assume there is a small cache consisting of four one-word blocks. The following table
shows the number of misses for the cache reference sequence of block addresses: 0,

8, 0, 6, 8 for a direct-mapped cache.

Address of | Hit  or | Contents of cache blocks after references
memory block | miss Block 0 Block 1 Block 2 Block 3
accessed

0 miss Memory|[0]

8 miss Memory|[8]

0 miss Memory|[0]

6 miss Memory|[0] Memory[6]

8 miss Memory([8] Memory|[6]

3.1 (10%) Draw a similar table to show the misses for the same cache access sequence
for a two-way-set associative cache with the same cache size and block size (i.e.,
four one-word blocks). Assume that the replacement policy is least recently used
(LRU). Among all the misses, how many misses are compulsory misses? How many
misses are capacity misses? How many misses are conflict misses?

3.2 (10%) Repeat the above question for a full-associative cache of the same size.

4. (20%) Cache

4.1 (5%) How many bits in total (including the tag bits and valid bits) are required for
a direct-map cache with 16K bytes of data and 16-byte blocks, assuming a 32-bit
address and one valid bit for each cache block?

4.2 (5%) Repeat the above problem for a two-way set-associative cache.

4.3 (5%) Repeat the above problem for a fully associative cache.

4.4 (5%) Among three three cache placement policies of direct-map, set-associativity
and fully-associativity, what placement policies are usually used for translation
lookaside buffer (TLB) and why?

5. (20%) Answer the following questions



5.1 (5%) What is SIMD? Give brief explanation.

5.2 (5%) What is VLIW? Give brief explanation.

5.3 (5%) What is dynamic branch prediction? Explain the example of a 2-bit branch
prediction scheme by drawing the state transition diagram.

5.4 (5%) What is static multiple issue? What is dynamic multiple issue? Compare the

differences.



