Algorithms, 2017/07/10

1. (20) Suppose you have designed an algorithm with time complexity

$$T(n) = O(tn^{1+1/t} + n\log n),$$

where n is the size of input and t is a parameter that you can choose between 1 and n. How to choose the parameter t so that your algorithm has the lowest time complexity?

2. (20) Fibonacci numbers are defined as: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for n > 1. The value of F_n can be computed by the definition iteratively.

```
F_0 = 0; F_1 = 1;

for (i = 2; i \le n; i + +)

F_i = F_{i-1} + F_{i-2};

print F_n;
```

It can also be computed by the formula

$$F_n = (\theta^n - \bar{\theta}^n)/\sqrt{5},$$

where $\theta = (1 + \sqrt{5})/2$, and $\bar{\theta} = (1 - \sqrt{5})/2$. Compare the two methods for computing F_n . Which method is more efficient, i. e. which method needs less number of bit operations?

- 3. (20) Suppose you have reduced, in polynomial-time, a problem P to another problem Q. For each one of following facts, state what can be concluded by this reduction.
 - (a) The problem Q is NP-hard.
 - (b) The problem Q is in P.
 - (c) The problem P is NP-hard.
 - (d) The problem P is in P.
- 4. (20) Let x_1, x_2, \dots, x_n be a data set of n integers. The *mode* is the value that appears most often in a set of data. We are going to design an algorithm for finding the mode in a very large data set by using very small amount of memory. In the following C-like code, valuables a and c are used to denote a occurs c times.

```
c=0;

for (i=1; i \le n; i=i+1) {

  if (c==0) {a=x_i; c=1;}

  elseif (x_i==a) {c=c+1;}

  else {c=c-1;}

}

print a;
```

(a) Explain why the above algorithm works for the case that some data occurs at least (n+1)/2 times.

- (b) If no data occur at least (n+1)/2 times, show that the algorithm will fail.
- 5. (20) We are going to design an approximation algorithm for the traveling salesman problem. The input to the problem is a weighted complete graph G = (V, E, w) where w is a weight function $w: E \to R^+$ and R^+ is the set of positive numbers. Assume that w satisfies triangle inequality, i. e. $w(x,y) + w(y,z) \ge w(x,z)$ for all $x,y,z \in V$. The output of your algorithm should be a good solution C, which is a spanning cycle of G.
 - (a) Let T be a spanning tree of G, and v_1, v_2, \ldots, v_n be the depth-first traversal of T starting from some vertex v_1 . Let $C = v_1, v_2, \ldots, v_n, v_1$ be a spanning cycle of G constructed from the depth-first traversal of the spanning tree T. Show that the total distance of C, w(C), is bounded by 2w(T). (10)
 - (b) Design an approximation algorithm for computing a spanning cycle C of G with $w(C) \leq 2w(C^*)$, where C^* is the optimal solution. (20)