
Dept. of Computer Science and Engineering, National Sun Yat-Sen University Spring, 2010

 1

Computer Organization
Midterm Exam

Instructor: Dr. Ing-Jer Huang

1. Consider a computer running programs with CPU times shown in the following table.

FP Instr. INT Instr. L/S Instr. Branch Instr. Total Time

35 S 85 S 50 S 30 S 200 S

(1) (5%) By how much is the total time reduced if the time for FP operations is reduced by 20%?
(2) (5%) By how much is the time for INT operations reduced it the total time is reduced by 20%?

2. Assume that the variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4,
respectively. Assume that the base address of the array A and B are in registers $s6 and $s7,
respectively.
(1) (5%) For the C statement below, what is the corresponding MIPS assembly code?

(Please refer to the final page for the MIPS assembly language revealed in chapter 2)

C statement: f = g + h + B[4]

(2) (5%) For the C statement above, how many different registers are needed to carry out the C
statement?

3. For the following problems, the table holds various binary values for register $t0 and $t1.

$t0 = 1010 1101 0001 0000 0000 0000 0000 0000two
$t1 = 0011 1111 1111 1000 0000 0000 0000 0000two

(1) (5%) What is the value of $t2 after the following instructions?
 slt $t2, $t0, $t1
 beq $t2, $zero, ELSE

 j DONE

ELSE: addi $t2, $zero,2

DONE:

(2) (5%) What is the value of $t2 after the following instructions?
 sll $t0, $t0, 2
 slt $t2, $t0, $zero

4. (5%) Show a truth table for a multiplexor (inputs A, B, and S; output C), using don’t cares to
simplify the table where possible.

5. (5%) Prove that the NAND gate is universal gate by showing how to build the AND, OR, and NOT
functions using a two-input NAND gate.

Dept. of Computer Science and Engineering, National Sun Yat-Sen University Spring, 2010

 2

6. The following table shows results for SPEC2006 benchmark programs running on an AMD
Bracelona.

 Name Intr. Count x109 Execution time (seconds) Reference time (seconds)
a perl 2118 500 9770
b mcf 336 1200 9120

(1) (5%) Find the CPI if the clock cycle time is 0.333 ns.

(2) (5%) Find the SPEC ration.

(3) (5%) For these two benchmarks, find the geometric mean.

7. Compile the following C statement. (Please refer to the final page for the MIPS assembly language
revealed in chapter 2)
(1) (5%) Assume variable f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, $s3, and $4

respectively. For the C statement below, what is the corresponding MIPS assembly code?

C statement: f = (g + h) – (i + j)
(2) (5%) Assume variable h is assigned to the registers $s2 and the base address of the array A is in

$s3. For the C statement below, what is the corresponding MIPS assembly code?

C statement: A[12] = h + A[8]

8. (5%) Show how the data in the table would be arranged in memory of a little-endian and a
big-endian machine. Assume the data is stored starting at address 0

0x12345678

9. (10%) Consider an integer array a [5], which contains five 32-bits integer. What is the value of X, Y,
Z, and W.

10. (10%) Let’s look in more detail at multiplication. We will use the numbers in the following table.

A B
101000two 010011two

Using the hardware described in Figure 1 to calculate the product of two unsigned 6-bits binary
numbers A and B. Complete the contents of each register on each step list on the following table.

300

400

500

600

700

a[0]:

a[1]:

a[2]:

a[3]:

a[4]:

100 ~ 103

104 ~ 107

108 ~ 111

112 ~ 115

116 ~ 119

(1) X = a;
(2) Y = *a;
(3) Z = *(a+2);
(4) W = *a+2;

Value Mem Address

Dept. of Computer Science and Engineering, National Sun Yat-Sen University Spring, 2010

 3

Step Action Multiplier Multiplicand Product
0 Initial values 010 011 000 000 101 000 000 000 000 000
1 Prod = Prod + Mcand 010 011 000 000 101 000 000 000 101 000

Lshift Mcand 010 011 000 001 010 000 000 000 101 000
Rshift Mplier 001 001 000 001 010 000 000 000 101 000

2 Prod = Prod + Mcand 001 001 000 001 010 000 000 001 111 000
Lshift Mcand 001 001 000 010 100 000 000 001 111 000
Rshift Mplier 000 100 000 010 100 000 000 001 111 000

3 LSB = 0, no operation 000 100 000 010 100 000 (1) _____________
Lshift Mcand 000 100 000 101 000 000 (2) _____________
Rshift Mplier 000 010 000 101 000 000 (3) _____________

4 LSB = 0, no operation 000 010 000 101 000 000 (4) _____________
Lshift Mcand 000 010 001 010 000 000 000 001 111 000
Rshift Mplier 000 001 001 010 000 000 000 001 111 000

5 Prod = Prod + Mcand 000 001 001 010 000 000 (5) _____________
Lshift Mcand 000 001 010 100 000 000 (6) _____________
Rshift Mplier 000 000 010 100 000 000 (7) _____________

6 LSB = 0, no operation 000 000 010 100 000 000 (8) _____________
Lshift Mcand 000 000 101 000 000 000 (9) _____________
Rshift Mplier 000 000 101 000 000 000 (10) _____________

Figure 1 First version of the multiplication hardware

Dept. of Computer Science and Engineering, National Sun Yat-Sen University Spring, 2010

 4

11. The following table shows bit patterns expressed in hexadecimal notation.

Bit pattern: 0xAFBF0000sixteen

What decimal number does the bit pattern represent.
(1) (5%) If it is a two’s-complement integer?
(2) (5%) If it is a floating-point number? Use the IEEE 754 standard.

12. (10%) Please refer to the 4-bit ALU as shown in Figure 2. The ALU supported set on less

than(slt) using just the sign bit of the adder. Let’s try a set on less than operation using the value
-7ten and 6ten. To make it simpler to follow the example, let’s limit the binary representations to 4 bits:
1001two and 0110two

 1001two – 0110two = 1001two + 1010two = 0011two

This result would suggest that -7 > 6, which is clearly wrong. Hence we must factor in overflow in
the decision. Modify the Most Significant Bit (MSB) ALU list on the right side to handle slt
correctly. Make your changes on this paper directly to save time. (Hint: if overflow not occurs, when
sign bit equals to ‘1’, it implies a < b; if overflow occurs, when sign bit equal to ‘0’, it implies a < b.
Therefore, you will add a logic gate on the signal Set and Overflow, and then generate a new Set
signal.)

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

Figure 2 4-bit ALU

Dept. of Computer Science and Engineering, National Sun Yat-Sen University Spring, 2010

 5

Appendix: MIPS assembly language revealed in chapter 2

