Linear Algebra Midterm

2009.11.18

1. (extra 30%) Solve for X in the matrix equation AX = B, where

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 4 \\ -3 & 2 & -7 \end{bmatrix} . B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} .$$

- 2. (20%) Prove that the product of two upper-triangular matrices is upper-triangular.
- 3. (20%) In R^3 , find the **projection matrix** to the line with direction

$$\theta = \frac{\pi}{4}, \ \phi = \frac{\pi}{6},$$

where θ is the angle between the line and the *z*-axis, and ϕ is the angle between the projection of the line on the *xy*-plane and the *x*-axis. (hint: the projection of the basis vectors)

- (20%) Let S_n be the set of n × n real symmetric matrices, and K_n be the set of n × n real skew-symmetric matrices. Let M_n be the set of real n × n matrices.
 - (a) Is \mathcal{M}_4 a vector space? Explain.
 - (b) What are the dimensions of \mathcal{K}_4 , \mathcal{S}_4 and \mathcal{M}_4 ? Explain.
- 5. (20%) Define the **inner-product** in \mathcal{M}_4 as

$$(A,B) = \sum_{i,j=1}^{n} a_{ij} b_{ij}.$$

- (a) Is \mathcal{K}_4 orthogonal to S_4 ? Explain.
- (b) Are \mathcal{K}_4 , \mathcal{S}_4 orthogonal complements? Explain.
- 6. (20%) Let \mathcal{F} be the set of functions defined on the interval [-1,1] and spanned by

$$\{1, x, x^2, x^3\}.$$

For example, $f(x) = 1 + 2x \in \mathcal{F}$. Let the inner product of two functions be defined by the integral of their product. Find a set of **orthogonal** functions that also spans F. (hint: Gram-Schmidt)