DISCRETE MATHEMATICS

Final Examination (2010/01/13)

- 1. [10%] Solve the following recurrence relation. (No final answer should involve complex numbers.) $a_n + 2a_{n-1} + 2a_{n-2} = 0$, $n \ge 2$, $a_0 = 1$, $a_1 = 3$
- 2. [10%] Solve the following recurrence relation. $a_{n+2}^2 5a_{n+1}^2 + 6a_n^2 = 7n$, $n \ge 0$, $a_0 = a_1 = 1$
- 3. [10%] (If two subgraphs are isomorphic but have different vertex sets, consider them distinct.) (a) How many subgraphs H = (V, E) of K₆ satisfy |V| = 4?
 (b) For n≥3, how many subgraphs does K_n have?
- 4. [10%] Find the maximum length of a circuit in
 - (a) K_{10} (b) K_{2n} , $n \in \mathbb{Z}^+$
- 5. [10%] Determine whether or not each of the following sets of numbers is a ring under ordinary addition and multiplication. If not, explain why.
 - (a) R = the set of positive integers and zero
 - (b) $R = \{a + b\sqrt{2} + c\sqrt{3} \mid a \in \mathbb{Z}; b, c \in \mathbb{Q}\}$
- 6. [10%] Find a simultaneous solution for the system of three congruences: (use "Chinese Remainder Theorem")

$$X \equiv 3 \pmod{17}$$
, $X \equiv 10 \pmod{16}$, $X \equiv 0 \pmod{15}$

- 7. [10%] How many units are there in \mathbb{Z}_{72} ?
- 8. [10%] Let $(F, +, \circ)$ be a field where F is a nonempty set and "+", " \circ " are two binary operations on F. Please describe the eleven requirements the field must satisfy.
- 9. [10%] Please show that the multiplicative group ($U_9 = \{1, 2, 4, 5, 7, 8\}, \circ$) is cyclic, where $x \circ y = xy \mod 9$ for each x, y in U_9 , for example: $4 \circ 5 = 20 \mod 9 = 2$.
- 10. [10%] Let (G, \circ) and (H, *) be two groups. Prove that if $f: G \to H$ is a homomorphism, then f(S) is a subgroup of H for each subgroup S of G.