National Sun Yat-Sen University ASSEMBLY LANGUAGE AND MICROCOMPUTER

Midterm Exam

9:20-11:20PM April 17 2009

Note: Although there are total 110 points for this exam, the maximum score you can get is 100 points.

- 1. For the 16-bit MU0 instruction set shown in the right table, (16 pts)
- (a) Find out the number of cycles it takes to execute the following code until reaching the *STP* instruction. (Assume the code is placed in the memory starting from address #0, and the values stored in memory address #6 and #7 are 10 and 1, respectively.

 Instruction Opcode Effect

LDA #6; SUB #7; JNE #1 STP

Instruction	Opcode	Effect
LDA S	0000	$ACC := mem_{16}[S]$
STO S	0001	$mem_{16}[S] := ACC$
ADD S	0010	$ACC := ACC + mem_{16}[S]$
SUB S	0011	$ACC := ACC - mem_{16}[S]$
JMP S	0100	PC := S
JGE S	0101	if $ACC \ge 0 PC := S$
JNE S	0110	if ACC !=0 PC := S
STP	0111	stop

- (b) Show the details of the binary contents for the first eight addresses of the memory.
- 2. Specify a single ARM instruction which implements the following equation: (12 pts)
 - (a) r0 = r2 8 r1
- (b) mem[r1+4]=r2;
- (c) $r1 = r6_{[7:0]}$;
- (d) r1 = r2 * 17
- 3. Suppose r1=0xF0000001, r2=0xF0000000 and C=1, N=0, Z=0, V=0, find out the resulting **r1** value of the following instructions. You should also provide the resulting conditional code value (**C N Z**). (20 pts)
 - (a) ADDC r1, r1, r2
- (b) SBCS r1, r1, r2
- (c) CMP r1, r2
- (d) EOR r1, r2, r2.
- 4. Suppose r0=0x80010, r1=0x8001c, r2=6, r3=7, r4=8, and the following table shows some part of the memory contents. (16 pts)

Memory address

0x00080020

0x0008001c

0x00080018

0x00080014 0x00080010

0x0008000c

Data

0x00000005

0x00000004

0x00000003

0x00000002

0x00000001

0x00000000

- (a) Find out the value of r0 and r1 after the execution of the following instruction.
 - (i) LDR
- r0, [r1, #4] ! (4 pts)
- (ii) LDR
- r0, [r1], #4
- (4 pts)
- (b) Find out the value of r0 and the memory content after the execution of the following instructions: (5 pts)

(c) Following the *STMIA* instruction of (b), write down an ARM instruction to restore the value from memory to registers r2, r3, and r4. (3 pts)

- 5. Explain the following two popular addressing modes: (1) Immediate (2) Base plus offset. You should provide an ARM instruction as an example for each mode. (8 pts)
- 6. Answer for the following short questions: (16 pts)
 - (a) List two ARM exception types. Discuss how to invoke each of two listed exceptions. (8 pts)
 - (b) Which two of the 16 registers in ARM are used to be the program counter and link register. (4 pts)
 - (c) Write down an ARM instruction for the blank box in the following code such that this code can provide the function of "jump table". (4 pts)

	DL	JUMP LAD	
JUMPTAB	ADR CMP	r1, SUBTAB r0, #SUBMAX	
	В	ERROR	
SUBTAB	DCD	SUB0	
	DCD	SUB1	
	DCD	SUB2	

7. For the following ARM codes in the memory with a little-endian ordering, find out the value of r0, r1, r2, and r3 after the program executes the instruction at pc=0x1014. (12 pts)

Memory address (in hexadecimal format)	Instruction	
1000		ADR r1, TEXT
1004		LDRB r0, [r1], #1
1008		LDR r2, VALUE
100C		MOV r14,r1
1010		BL SUB1
1014	SUB1	ADD r3, r14, #2
	•••••	
3000	VALUE	DCD &87654321
3004	TEXT	DCD &12345678

8. Modify the following program to output rI in binary format. For the value loaded into rI in the example program, you should get 00010010011010011110001111000. (10 pts)

```
AREA
               Hex_Out, CODE, READONLY
               EQU &0 ; output character in r0
SWI_WriteC
              EQU &11
r1, VALUE
                                ; finish program
SWI_Exit
                                ; code entry point
       ENTRY
                                ; get value to print
       LDR
                                ; call hexadecimal outpur
       BL
               HexOut
              SWI_Exit
&12345678
r2, #8
       SWI
                               ; finish
                               ; test value
VALUE
       DCD
                                ; nibble count = 8
HexOut MOV
               r0, r1, LSR #28 ; get top nibble
LOOP
       VOM
                               ; 0-9 or A-F?
               r0, #9
       CMP
       ADDGT r0, r0, #"A"-10 ; ASCII alphabetic
       ADDLE r0, r0, #"0" ; ASCII numeric SWI SWI_WriteC ; print characte
                                ; print character
               r1, r1, LSL #4 ; shift left one nibble
       VOM
        SUBS r2, r2, #1
                                ; decrement nibble count
               LOOP
pc, r14
                                ; if more do next nibble
        BNE
        VOM
                                ; return
        END
```