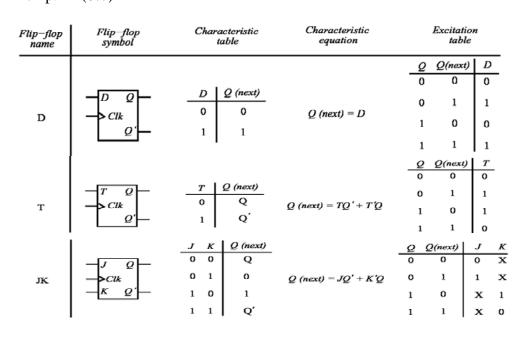
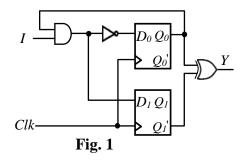
國立中山大學九十七學年度第二學期資工系數位系統期末考試題

學號:


姓名:


一、選擇與是非題(每題4分,40分)

- () 1. What kind of flip-flop is the most popular component to compose a register? $\bigcirc SR \oslash D \oslash JK \oplus T$
- () 2 What kind of flip-flop is the most popular component to compose an asynchronous counter? $@SR @D @JK \oplus T \circ$
- () 3. Compared with a synchronous counter, which one is the main weakness of the asynchronous counter? ①longer delay ②larger cost (area) ③larger power consumption ④more difficult to design
- What kind of storage component usually merges the input data bus and output data bus into a bi-direction I/O bus to reduce the number of I/O pins? ①Register file ②ROM ③RAM ④FIFO
-) 5. How many address lines are required in a 16M×16 RAM? ①16 ②20 ③24 ④28
- () 6. The BCD counter can be achieved by a 4-bit up/down counter with parallel load. The '0' must be loaded when count direction is down and counter content is 9.
- () 7. To extend the address space (increase the number of memory words), a larger RAM can be composed of some smaller RAMs with parallel connection (並聯).
- () 8. Compared with RAM, register file has shorter access time and smaller capacity (memory words).
- () 9. The control unit in a digital system is a sequential circuit and it can be regarded as a finite state machine (FSM).
- () 10. The datapath in a digital system is a combinatorial circuit.

二、問答題(80分)

- **1.** Derive (a) excitation equations, (b) a next-state equation, (c) a state/output table, and (d) a state diagram for the circuit shown in Fig. 1. (18%)
- **2**. Using the synthesis procedure for FSM models, design a synchronous counter that counts in the sequence 0, 1, 3, 5, 0, 1, 3, 5, ..., using natural binary encoding as shown in Fig. 2 and: (a) D flip-flops (b) JK flip-flops. (18%)
- **3**. Design a 4-bit register that can load new data and swap the most-significant and least-significant bits as shown in Table 1. (10%)
- **4.** Construct a 4-bit asynchronous counter using: (a) T flip-flops (b) D flip-flops. (12%)
- 5. (1) Please fill in the blanks in Table 2 with the control words of one's counter example. (14%)
 (2) Please describe the operation of the datapath shown in Fig. 3 to perform Ocount := 0 and Ocount := Ocount + Temp. (8%)

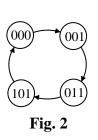
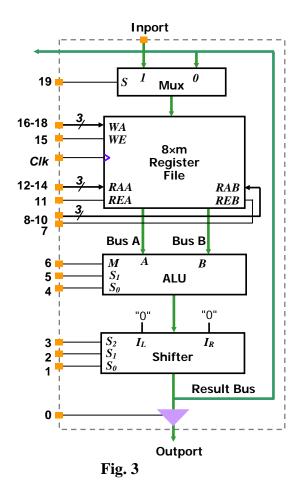

0XNo Change $Q_3 Q_2 Q_1 Q_0$ 10Load Input $I_3 I_2 I_1 I_0$	S_1	S_0	Operation	Next State
	0	Х	No Change	$Q_3 Q_2 Q_1 Q_0$
1 1 0 0 0 0 0	1	0	Load Input	$I_3 I_2 I_1 I_0$
I I Swap $Q_1 Q_0 Q_3 Q_2$	1	1	Swap	$Q_1 Q_0 Q_3 Q_2$

Table 1	
---------	--

Data => R1


Mask => R2 Ocount => R3

Temp => R4

Contro. Words	l IE	Write address	Read address A	Read address B	ALU operation	Shifter operation	OE
1	1	R1	х	х	х	х	0
2	0	R3	R0	R0	add	pass	0
3	0						0
4	0					_	0
5	0						0
6	0						0
7	0	none	R3	0	add	pass	1

Table 2

- 2. Ocount := 0 3. Mask := 1
- while Data :≠ 0 repeat Temp := Data AND Mask
- 4.
- Ocount : = Ocount + Temp Data := Data >> 1 5.
- 6.
- end while
- 7. Output := Ocount

S	$_2 S_1$	S_{θ}	Shift Operations
0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	pass pass not used not used shift left rotate left shift right
1	1	1	rotate right
М	S_1	S ₀	ALU Operations
0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	complement A AND EX-OR OR decrement A add subtract increment A