線性代數期末考 2014.01.08

1. Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}.$$

2. Factor the following matrix into $S\Lambda S^{-1}$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

3. Lucas started with $L_0 = 2$ and $L_1 = 1$. The rule $L_{k+2} = L_{k+1} + L_k$ is the same, so A is still Fibonacci matrix. Add its eigenvectors $\mathbf{x}_1 + \mathbf{x}_2$:

$$\begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} + \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} L_1 \\ L_0 \end{bmatrix}.$$

Compute the Lukas number L_{10} and λ_1^{10} .

4. From this general solution to $\frac{d\mathbf{u}}{dt} = \mathbf{A}\mathbf{u}$, find A:

$$\mathbf{u}(t) = c_1 e^{2t} \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 e^{5t} \begin{bmatrix} 1\\1 \end{bmatrix}.$$

5. Compute $\mathbf{A}^{H}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{H}$:

$$\mathbf{A} = \begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix}.$$

- 6. If the transformation T is a reflection across the 45° line in the plane, find its matrix with respect to the standard basis $v_1 = [1 \ 0], v_2 = [0 \ 1]$, and also with respect to $V_1 = [1 \ 1], V_2 = [1 \ -1]$.
- 7. (20%) Compute $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$, their eigenvalues and eigenvectors, for

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Multiply the three matrices $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ to recover \mathbf{A} .

8. Decide between maximum, minimum, or saddle point for the following cases

(a)
$$F = -1 + 4(e^x - x) - 5x \sin y + 6y^2$$
 at the point (0,0)

- (b) $F = (x^2 2x) \cos y$ at the point $(1, \pi)$
- 9. Find the (generalized) eigenvalues and eigenvectors of $Ax = \lambda Mx$:

$$\begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix} \mathbf{x} = \lambda \frac{1}{18} \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{x}.$$