DISCRETE MATHEMATICS

Final Examination (2014/01/17)

(You should show how to get your answers in detail or get no credit.)

- 1. [10%] (a) Find an Euler circuit in the complete graph K_4 . (b) Find all Euler trails in the complete bipartite graph $K_{2,3}$.
- 2. [10%] Draw all non-isomorphic planar graphs (but not multigraphs) G = (V, E), where |V| = 4.
- 3. [10%] Prove that: Let G = (V, E) be a loop-free graph with |V| = n > 1. If $\deg(x) + \deg(y) > n 2$ for all $x, y \in V, x \neq y$, then (1) G is connected and (2) G has a Hamilton path.
- 4. [10%] Find a ring with four elements such that it is not a field, and show why your answer is correct.
- 5. [10%] Prove that: A finite integral domain is a field.
- 6. [10%] Find a field with five elements and show why it is a field.
- 7. [10%] Find $[17]^{-1}$ in \mathbb{Z}_{180} ?
- 8. [10%] Find an integer m such that $0 < m < 3 \cdot 4 \cdot 5$ and $\begin{cases} m \equiv 1 \pmod{3} \\ m \equiv 2 \pmod{4} \end{cases}$ by $m \equiv 3 \pmod{5}$

Chinese Remainder Theorem. (Use Chinese Remainder Theorem or get no credit.)

- 9. [10%] (Fermat's Theorem) If p is a prime, prove that $a^p \equiv a \pmod{p}$ for each $a \in \mathbb{Z}$.
- 10. [10%] (Euler's Theorem) For each $n \in \mathbb{Z}^+$, n > 1, and each $a \in \mathbb{Z}$, prove that if GCD(a, n) = 1, the $a^{\phi(n)} \equiv 1 \pmod{n}$.