Discrete Mathematics

- [12%] (a) Let A = {1, 2, 3, 4, 5} and B = {x, y, z}. How many functions f: A → B are onto?
 (b) For finite sets A and B with |A| = m and |B| = n, how many functions f: A → B are onto?
 (c) Let A = {a₁, a₂, ..., a_m} and B = {b₁, b₂, ..., b_n} with |A| = m and |B| = n. How many onto functions f: A → B satisfy f(a₁) = b₁?
- 2. [6%] An auditorium has a seating capacity of 900. How many seats must be occupied to guarantee that at least two people seated in the auditorium have the same last initial and the same sex?
- 3. [8%] For an alphabet $\Sigma = \{x, y, z\}$, let $A, B, C \subseteq \Sigma^*$. If $A = \{yy, yyy\}$, $B = \{x, xx, y\}$, $C = \{y, xy, xxy\}$, then (a) $(BA \cap CA) = ?$ and (b) please show two strings which are in $(BA \cap CA)$ but not in $(B \cap C)A$.
- 4. [9%] Let Σ = {x, y, z} be an alphabet. Please show (a) a language that contains all strings w in Σ* where the length of w is even; (b) a language that contains all strings w in Σ* for which xyz is a suffix of w; and (c) a language that contains all strings w in Σ* where w contains only two x's.
- 5. [10%] Construct a state diagram for a finite state machine with the input alphabet $I = \{0,1\}$ and $O = \{0,1\}$ that recognizes all strings in the language $\{0,1\}^*\{000\} \cup \{0,1\}^*\{111\}$.
- 6. [10%] Construct a state diagram for a finite state machine with the input alphabet $I = \{0,1\}$ and the output alphabet $O = \{0,1\}$ that recognizes all strings that end in 00 and in a position that is a multiple of two.
- 7. [12%] Let A be a set with |A| = m. (a) How many binary relations on A are not reflexive?
 (b) How many binary relations on A are symmetric?
 (c) How many binary relations on A are antisymmetric?
- 8. [10%] Let *R* be the "less than or equal to" relation defined on A = {1, 2, 3, 4}. (a) Please draw the directed graph for *R*. (b) If *R* is a partial order on *A*, please draw the Hasse diagram for *R*.
- 9. [5%] If $A = \{1, 2, 3, 4, 5, 6\}$ and *R* is the equivalence relation on *A* that induces the partition $A = \{1, 2, 3, 4\} \cup \{5, 6\}$, what is *R*?
- 10. [10%] Let $A = \{-3, -1, 12\} \times \{-8, -5, 0, 4, 7\}$, and define *R* on *A* by $(x_1, y_1) R (x_2, y_2)$ if $(x_1 y_1)$ mod $5 = (x_2 - y_2) \mod 5$. (a) Determine the equivalence class [(-3, -8)] and (b) Determine the partition of *A* induced by *R*.
- 11. [8%] Minimize the two finite state machines you have constructed in 5. and 6., respectively.

[You should show how to get the answers in detail or obtain no credit.]