Algorithms

1. (10) Let f and g be two functions from integers to integers. State the definition of "f(n) is O(g(n))" and then prove that $(2n+3)^2$ is $O(n^2)$ by giving the constants n_0 and c in the definition of O-notation.

2. (10) Show that the harmonic series
$$S(n) = \sum_{i=1}^{n} \frac{1}{i}$$
 is $\Theta(\log n)$.

3. (10) The Fibonacci numbers are defined as:

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$$
 for $n > 1$.

Show that $F_n > 2^{n/2}$ for n > 5.

4. (10) Show that $\log(n!) = \Theta(n \log n)$. (Hint: To show an upper bound, compare n! with n^n . To show a lower bound, compare it with $(n/2)^{n/2}$.)

- 5. (15) Suppose that a computer can only do addition (+) and arithmetic shift (<< or >>). Write C-like code to compute the following statements efficiently.
 - (a) y = 10x.
 - (b) y = 15x.
 - (c) Suppose that the computer can also do subtraction (–), in addition to addition and shift. Show how to compute y = 15x more efficiently.
- 6. (15) A method to solve a recurrence equation is to expand out the recurrence a few times, until a pattern emerges. For each of the following recurrence equation,
 - (a) T(n) = 3T(n/2) + n,
 - (b) T(n) = T(n-1) + 1.

answer the following questions.

- (a) What is the general k-th term?
- (b) What value of k should be plugged in to get the answer?
- (c) What is the solution to the recurrence equation?

7. (20) Let a_i and b_i , $1 \le i \le n$, be integers. Design a linear time algorithm for computing $s = \sum_{i=1}^{n} \sum_{j=1}^{i} a_i b_j$. Estimate the number of multiplications and the number of additions needed to compute s.

- 8. (10) Consider an infinite array in which the first n cells store a sequence of n sorted integers $x_1 \le x_2 \le \ldots \le x_n$ and the rest cells are filled with ∞ . Note that n is not given as input to the algorithm. Design an algorithm that takes an integer y as input and finds a position in the array containing y in $O(\log n)$ time. If y is not in the array, then output 0.
- 9. (10) After a test, the scores of n students are stored in an array A[1..n]. Assume that all scores are positive integers. Give a linear time algorithm to rearrange the n scores stored in the array so that all the scores greater than or equal to 60 appears before the scores less than 60.
- 10. (10) Suppose that n numbers are to be sorted, each of which is an integer in the following interval. Design a linear time algorithm for this problem, or show that this is impossible.
 - (a) [0, n-1]
 - (b) $[0, n^2 1]$
 - (c) $[0, n^3 1]$