
Operating Systems, Spring 2011

Midterm

1:10pm ∼ 2:50pm, Tuesday, April 19, 2011

INSTRUCTIONS:

1. This is a closed-book exam.

2. Try to solve all of the problems.

3. Try to give short answers. (Hint: An answer need not always be longer than the question.)

4. No cheating.

5. Please hand in both the exam sheet and the answer sheet.

6. Please note that unless otherwise stated, all the line numbers for the program listings are for reference
only.

1. (15%) Explain why fork returns twice and what are returned as we discussed in the classroom?

2. (20%) Consider the following preemptive priority-scheduling algorithm based on dynamically changing
priority. Larger priority numbers imply higher priority. When a process is waiting for the CPU (in the
ready queue, but not running), its priority changes at a rate α1; when it is running, its priority changes at
a rate α2. All processes are given a priority of 0 when they enter the ready queue. The parameters α1 and
α2 can be set to give many different scheduling algorithms.

(a) What is the algorithm that results from α1 < α2 < 0?

(b) What is the algorithm that results from α2 > α1 > 0?

3. (20%) Suppose that two processes, P1 and P2, are running in a uniprocessor system. P1 has two threads.
P2 has three threads. All threads in both processes are CPU-intensive; that is, they never block for I/O.
The operating system uses simple round-robin scheduling.

(a) Suppose that all of the threads are user-level threads, and that user-level threads are implemented
using a single kernel thread per process. What percentage of the processor’s time will be spent
running P1’s threads?

(b) Suppose instead that all of the threads are kernel threads. What percentage of the processor’s time
will be spent running P1’s threads?

4. (15%) Measurements of a certain system have shown that the average process runs for a time T before
blocking on I/O. A process switch requires a time S, which is effectively wasted (overhead). For round-
robin scheduling with quantumQ, give a formula for the CPU efficiency (i.e., the useful CPU time divided
by the total CPU time) for each of the following:

(a) Q > T

(b) S < Q < T

(c) Q = S

To simplify the answers, you may assume Q divides T evenly.

1

5. (15%) Consider the interprocess-communication scheme where mailboxes are used. Suppose a process
P wants to wait for two messages, one from mailbox A and one from mailbox B. What sequence of
send and receive should it execute so that the messages can be received in any order without from being
blocked by each other?

6. (15%) Consider the following C program that uses the Pthreads API. What would be the output of the
program?

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <pthread.h>

5 #include <sys/types.h>

6

7 int value = 5;

8

9 static void *runner(void *param);

10

11 int main(int argc, char **argv)

12 {

13 pid_t pid = fork();

14 if (pid > 0) {

15 printf("A = %d\n", ++value);

16 }

17 else if (pid == 0) {

18 pid_t pid = fork();

19 if (pid > 0) {

20 printf("B = %d\n", ++value);

21 }

22 else if (pid == 0) {

23 pid_t pid = fork();

24 pthread_t tid;

25 pthread_attr_t attr;

26 pthread_attr_init(&attr);

27 pthread_create(&tid, &attr, runner, NULL);

28 pthread_join(tid, NULL);

29 if (pid > 0)

30 printf("C = %d\n", ++value);

31 else

32 printf("D = %d\n", ++value);

33 }

34 else {

35 exit(1);

36 }

37 }

38 else {

39 exit(1);

40 }

41 return 0;

42 }

43

44 static void *runner(void *param)

45 {

46 value++;

47 pthread_exit(0);

48 }

2

