Chapter Exam

Chapter 4 – A Simple Implementation Scheme (4.1~4.4)

2011/05/17

 According Fig 1, Fig 2 and Fig 3, please fill the results in the blank cells(1)~(36) in the Table 1. (You must draw the Table on your answer paper and fill the results)
 (36. points)

R-type	0	rs	rt	rd	shamt	funct
	31:26	25:21	20:16	15:11	10:6	5:0
Load/ Store	35 / 43	rs	rt		address	,
otore	31:26	25:21	20:16		15:0	
Branch	4	rs	rt		address	
	31:26	25:21	20:16		15:0	
			Fig 1			

opcode	ALUOp	Operation	funct	ALU function	ALU control
lw	00	load word	XXXXXX	add	0010
sw	00	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

Fig 2

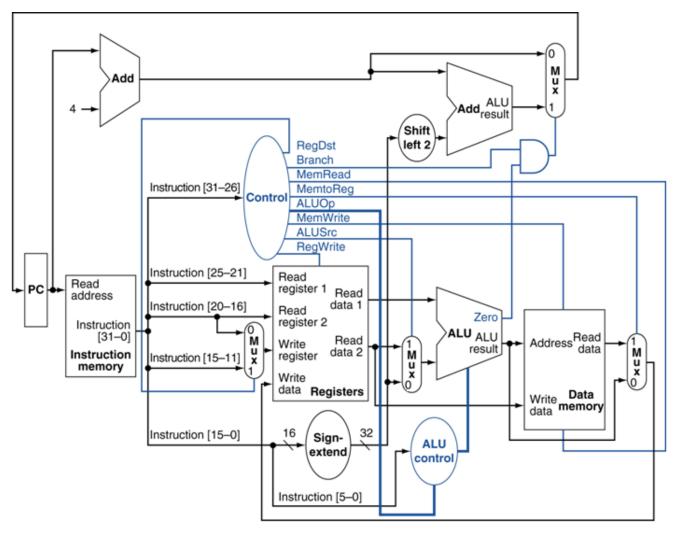


Fig 3

			Memto-	Reg	Mem	Mem			
Instruction	RegDst	ALUSrc	Reg	Write	Read	Write	Branch	ALUOp1	ALUp0
R-format	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
lw	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
SW	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)
beq	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	<mark>(36</mark>)

Table 1

2. According to the OP code of Fig 1 and the answer of question 1, Please write the logic equations for control signals ALUSrc and RegWrite, (24. points) For example, the logic equation for MemRead is "I₃₁(~I₃₀)(~I₂₉)(~I₂₈)I₂₇I₂₆."

Chapter Exam

Chapter 4 – The Processor (4.5 - 4.10)

2011/06/08

- 1. Given Fig.1, what are the control signals at 5th cycle using following instructions?
 - lw \$10, 20(\$1)
 - sub \$11, \$2, \$3
 - add \$12, \$3, \$4
 - lw \$13, 24(\$1)
 - add \$14, \$5, \$6

PCSro

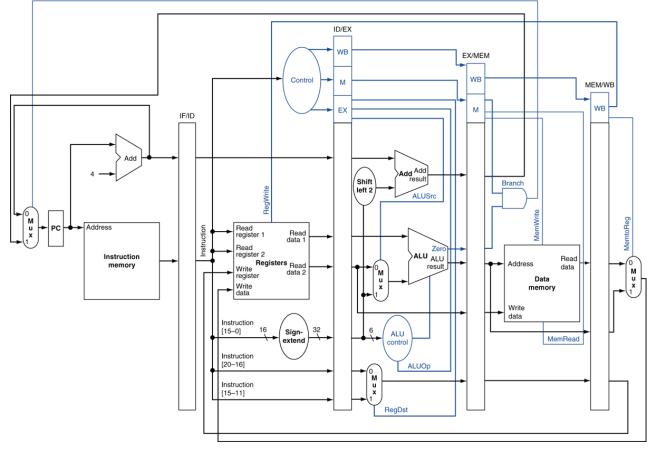
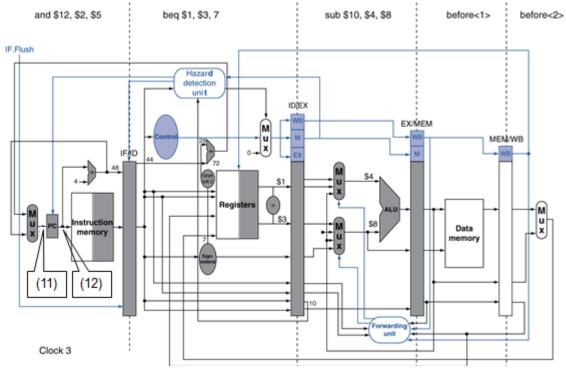



Fig.1

RegWrite	RegDst	ALUSrc	MemtoReg	PCSrc
(1)	(2)	(3)	(4)	(5)

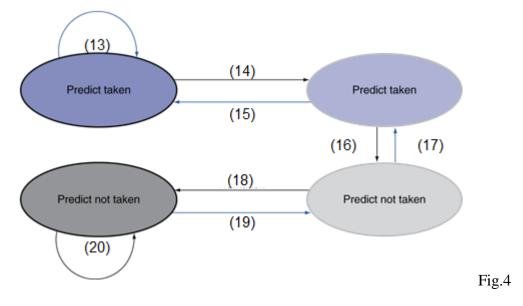
2. Given Fig.2, which is including data path with forwarding and hazard detection, please complete following condition?

課程: Computer Organization, 國立中山大學資訊工程學系,教師:黃英哲

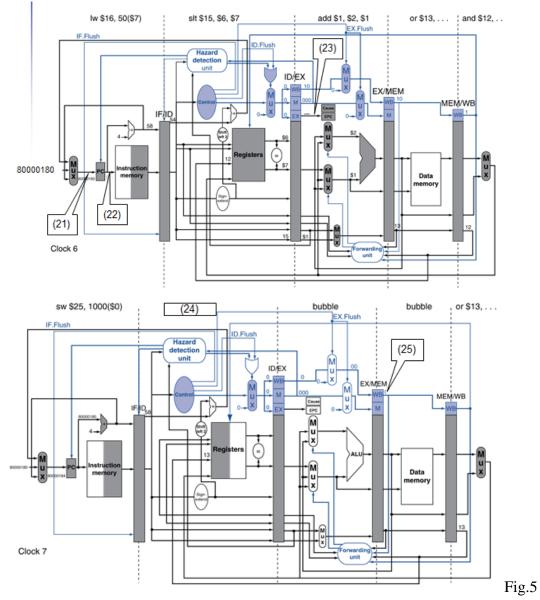

Forwarding of EX hazard

```
if (EX/MEM.RegWrite and (EX/MEM.RegisterRd \neq 0)
and (EX/MEM.RegisterRd = (6))) ForwardA = 10
if (EX/MEM.RegWrite and (EX/MEM.RegisterRd \neq 0)
and (EX/MEM.RegisterRd = (7))) ForwardB = 10
<u>Forwarding of MEM hazard</u>
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd \neq 0)
and (MEM/WB.RegisterRd = (8))) ForwardA = 01
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd \neq 0)
and (MEM/WB.RegWrite and (MEM/WB.RegisterRd \neq 0)
and (MEM/WB.RegWrite and (MEM/WB.RegisterRd \neq 0)
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd \neq 0)
and (MEM/WB.RegisterRd = (9))) ForwardB = 01
<u>Hazard detection</u>
if ((10) and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))) stall the pipeline
```

3. Given Fig.3, which is pipelined branch, what are contains of blank with branch taken?


36: sub \$10, \$4, \$8 beq \$1, \$3, 7 40: and \$12, \$2, \$5 44: 48: \$13, \$2, \$6 or 52: add \$14, \$4, \$2 56: slt \$15, \$6, \$7 ... 72: \$4, 50(\$7) lw

課程: Computer Organization, 國立中山大學資訊工程學系,教師:黃英哲


4. Given Fig.4, what are the arc symbols of 2-bit prediction scheme? (Taken or Not taken)

5. Given Fig.5, which is pipelined exception, what are contains of blank?

40	sub	\$11, \$	52, \$4	
44	and	\$12, \$	52, \$5	
48	or	\$13, \$	52, \$6	
4C	add	\$1, \$2	2, \$1	
50	slt	\$15, \$	56, \$7	
54	lw	\$16, 5	50(\$7))
80000)180	SW	\$25,	1000(\$0)
80000)184	SW	\$26,	1004(\$0)

課程: Computer Organization, 國立中山大學資訊工程學系,教師:黃英哲

How well loop unrolling and scheduling works on a static two-issue pipeline for MIPS, assume that the loop index is a multiple of four? Loop: lw \$t0, 0(\$s1)

	1
addu	\$t0, \$t0, \$s2
SW	\$t0, 0(\$s1)
addi	\$s1, \$s1,-4
bne	\$s1, \$zero, Loop

	ALU or branch instruction	Data transfer instruction	Clock cycle			
Loop:	addi \$\$1, \$\$1,-16	(29)	1			
		lw \$t1, 12(\$s1)	2			
	addu \$t0, \$t0, \$s2	lw \$t2, 8(\$s1)	3			
	(26)	lw \$t3, 4(\$s1)	4			
	(27)	(30)	5			
	(28)	sw \$t1, 12(\$s1)	6			
		sw \$t2, 8(\$s1)	7			
	bne \$s1, \$zero, Loop	sw \$t3, 4(\$s1)	8			

Chapter Exam

<u>Chapter 5 – Exploiting Memory Hierarchy</u>

2011/06/21

7. For a direct-mapped cache design with 32-bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31-10	9-4	3-0

(1) What is the cache line size? (10%)

(2) How many entries does the cache have? (10%)

- 8. How many total bits are required for a direct-mapped cache with 16 KB of data and 4-word blocks, assuming a 32-bit address? (20%)
- 9. Consider a cache with 64 blocks and a block size of 16 bytes. To what block number does byte address 1200 map? (20%)
- 10. Given a cache block of four words and a one-word-wide memory organization, assume 1 memory bus clock cycle to send the address, 15 memory bus clock cycles for each DRAM access initiated, 1 memory bus clock cycle to send a word of data.
 - (1) What is the miss penalty? (10%)
 - (2) What is the number of bytes transferred per bus clock cycle for a single miss? (10%)
- 11. Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access time of 1 clock cycle. Assume that the read and write miss penalties are same and ignore other write stalls. (20%)