ElectronicsPh. D. Qualification Exam. 2021 [calculator allowed, but not mobile phone]01/20/2021Name:ID#

Useful CMOS parameters and equations, Diode current $I_D = I_S \exp \frac{V_F}{V_T}$

$$\mu_{n}C_{ox} = 200\mu A/V^{2}, \quad \mu_{p}C_{ox} = 100\mu A/V^{2}, \quad V_{THN} = 0.4, \quad V_{THP} = -0.4, \quad r_{o} = 1/\lambda I_{D}$$

$$I_{D} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}[(V_{GS} - V_{TH})^{2}] \quad [\text{Transistor operated at saturation region, } V_{GS} - V_{TH} > 0 \text{ and } V_{DS} > V_{GS} - V_{TH}]$$

$$g_{m} = \mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{TH}) = \sqrt{\mu_{n}C_{ox}\frac{W}{L}I_{D}} = \frac{2I_{D}}{V_{GS} - V_{TH}} \text{[Transconductance]}$$

$$R_{on} = \frac{1}{\mu_{n}C_{ox}\frac{W}{L}[(V_{GS} - V_{TH})]} \quad [\text{Transistor on Resistance]}$$

$$g_{m} = \mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{TH}) = \sqrt{\mu_{n}C_{ox}\frac{W}{L}I_{D}} = \frac{2I_{D}}{V_{GS} - V_{TH}} \text{[Transconductance]}$$

1. If the circuit in the following figure represents a source and load with $v_s=75V$, and $R_3=54 \text{ k}\Omega$, then what are the values of (a) i_1 and (b) i_3 ? (5%)

2. Consider a *pn* junctions in forward bias. Initially a current of 5 mA flows through it, and the current increases by 8 times hen the forward voltage is increased by 1.5 times. Determine the initial bias applied and reverse saturation current. ($V_T = 26$ mV) (5%)

3. D_1 and D_2 have different cross section areas but are otherwise identical. Determine the current flowing through each diode in terms of I_{in}, I_{S1}, and I_{S2}. (5%)

4. Plot the input/output characteristic of the following circuit using the constant voltage model (V_{D,on}). (5%)

5. A Common Gate stage with a RG in series of gate of MOS including C_{GS} and C_{GD} only, please find the transfer function V_{out}/V_{in} . assume $\lambda = \gamma = 0.$ (10%)

6. Please find input impedance of the following circuits, ignoring all other capacitances. (10%)

7. An NMOS device carries 1 mA with $V_{GS} - V_{TH} = 0.6$ V and 1.6 mA with $V_{GS} - V_{TH} = 0.8$ V. If the device operates in the triode region, calculate V_{DS} and W/L. (10%) Ans:

8. In the common-source stage shown below, W/L = 30/0.18 and $\lambda = 0$. (a) What gate voltage yields a drain current of 0.5 mA? (Verify that M₁ operates in saturation.) (b) With such a drain bias current, calculate the voltage gain of the stage. (10%)

9. Assuming $A_0 = \infty$, compute the closed loop gain of the inverting amplifier shown below. Verify that the result reduces to expected values if $R_1 \rightarrow 0$ or $R_3 \rightarrow 0$. (12%)

10. Determine the transfer function. Y/X, for systems shown below. (12%)

11. For each NMOS section shown below, draw the dual PMOS section, construct the overall CMOS gate, and determine the logical function performed by the gate. (16%)

