線性代數期中考 2014.11.12

答案需有適當說明。總分最多採計100分。

1. (10%) Apply elimination to solve the following system of linear equations

$$\begin{array}{rcl} u + v + w & = & -2 \\ 3u + 3v - w & = & 6 \\ u - v + w & = & -1. \end{array}$$

2. (10%) Which of the following matrices are guaranteed to equal $(A + B)^2$?

$$A^2+2AB+B^2$$
, $A(A+B)+B(A+B)$, $(A+B)(B+A)$, $A^2+AB+BA+B^2$.

- 3. (10%)
 - (a) The matrix $((\mathbf{AB})^{-1})^T$ comes from $(\mathbf{A}^{-1})^T$ and $(\mathbf{B}^{-1})^T$. In what order?
 - (b) If U is upper-triangular then $(U^{-1})^T$ is of what shape?
- 4. (10%) Which of the following are subspaces of \mathbb{R}^{∞} ?
 - (a) All sequences like $(x_1, x_2, ...)$ with $x_j = 0$ from some point onward.
 - (b) All decreasing sequences: $x_{j+1} \leq x_j$ for all j.
 - (c) All convergent sequences: that x_j have a limit as $j \to \infty$.
 - (d) All arithmetic progressions: $x_{j+1} x_j$ is the same for all j.
 - (e) All geometric progressions: $\frac{x_{j+1}}{x_j}$ is the same for all j.
- 5. (10%) The cosine space \mathbf{F}_3 contains all combinations

$$y(x) = A\cos x + B\cos 2x + C\cos 3x.$$

Find a basis for the subspace that has y(0) = 0.

6. (10%) Suppose T transposes every 2 × 2 matrix M. This is a linear transformation. However, there is no 2 × 2 matrix A such that

$$\mathbf{A}\mathbf{M} = \mathbf{M}^T$$
.

Resolve the contradiction.

7. (10%) Find a vector in both column spaces $\mathcal{C}(\mathbf{A})$ and $\mathcal{C}(\mathbf{B})$:

	[1	2			5	4	
$\mathbf{A} =$	1	3	,	$\mathbf{B} =$	6	3	
	1	2			$\lfloor 5$	1	

This will be a vector Ax and also $B\hat{x}$. (hint: make use of the matrix [A B])

8. (10%) Suppose A is 3 by 4, B is 4 by 5, and AB = 0. Prove

$$\operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B}) \le 4.$$

- 9. (10%) What multiple of $\mathbf{a} = (1, 1, 1)$ is closest to the point $\mathbf{b} = (2, 4, 4)$? Find also the point closest to \mathbf{a} on the line through \mathbf{b} .
- 10. (10%) For the closest parabola $b = C + Dt + Et^2$ to the points

$$(b,t):$$
 $(0,0), (8,1), (8,3), (20,4),$

write the equations Ax = b in 3 unknowns x = (C, D, E). Set up the normal equation

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}.$$

11. (10%) Find an orthonormal set $\{q_1, q_2, q_3\}$ for which q_1, q_2 span the column space of

$$\mathbf{A} = \begin{bmatrix} 1 & 1\\ 2 & -1\\ -2 & 4 \end{bmatrix}.$$

Which fundamental subspace of A contains q_3 ?