## 國立中山大學103學年度第一學期資工系數位系統期末考試

學號: 姓名:

一、選擇與是非題(每題3分,12分)

- ( ) 1. What kind of flip-flop is the most popular component to construct a register?  $\bigcirc SR \oslash D \oslash JK \oplus T$
- ( ) 2. How many address lines are required in a 16M×16 RAM? ①14 ②16 ③24 ④34.
- ( ) 3. In DRAM, information is stored in the form of charges on capacitors. When compared to SRAM, DRAM has shorter read/write cycle.
- ( ) 4. Programmable read-only memory (PROM) has programmable AND array and fixed OR array.

二、問答題(88分)

**1.** Derive the following terms for the sequential circuit shown in Fig. 1.

| (1) Input (Excitation) equations | (6%) | (2) State equations | and output equation | (6%) |
|----------------------------------|------|---------------------|---------------------|------|
| (3) State table (Table 1) (6%)   |      | (4) State diagram   | (4%)                |      |

- **2.** Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Assume that binary states 011, 101 and 111 are considered as don't care conditions.
  - (1) Complete the state table as shown in Table 2 using natural binary encoding for state assignment. (4%)
  - (2) Use D flip-flops and derive the simplified flip-flop input (excitation) equations using the K-map (find the minimal sum of products expressions). (6%)
  - (3) Draw the logic diagram of the counter with D flip-flops as shown in Fig. 2(a). (4%)
  - (4) Use T flip-flops and complete the state table and T flip-flop input as shown in Table 2. (4%)
  - (5) Use T flip-flops and derive the simplified flip-flop input (excitation) equations using the K-map (find the minimal sum of products expressions). (6%)
  - (6) Draw the logic diagram of the counter with T flip-flops as shown in Fig. 2(b). (4%)
- **3.** A 64K  $\times$  8 memory uses coincident decoding by splitting the internal decoder into *X*-selection and *Y*-selection as shown in Fig. 3.
  - (1) What is the size of each decoder, and how many AND gates are required for decoding the address? (6%)
  - (2) Determine the *X* and *Y* selection lines that are enabled when the input address is the binary equivalent of 36,952. (6%)
- Using an 8 × 3 ROM shown in Fig. 4 and a 3 × 4 × 3 PLA shown in Fig. 5, implement the truth table shown in Table 3. (6%) (10%)
- **5.** Explain the read and write operations of the  $4 \times 4$  RAM and the memory cell as shown in Fig. 6(a) and 6(b), respectively. (10%)



國立中山大學102學年度第一學期資工系數位系統期末考試

學號:

姓名:

 $-A_2$ 

 $-A_1$ 

 $-A_0$ 







| Fip-flop                |                     | D           |                       | JK                 |                  |                                                        | т                     | <u>a</u> 19           |                  |                  |     |   |      |      |      |
|-------------------------|---------------------|-------------|-----------------------|--------------------|------------------|--------------------------------------------------------|-----------------------|-----------------------|------------------|------------------|-----|---|------|------|------|
| characteristic equation | Q( <i>t</i> +1) = D |             |                       | Q(t+1) = JQ' + K'Q |                  | ) Q(                                                   | $Q(t+1) = T \oplus Q$ |                       | B –              |                  |     | 7 |      |      |      |
|                         | D                   | <b>Q</b> (1 | t + 1)                | J                  | к                | Q(t +                                                  | 1)                    | _ <b>T</b>            | <b>Q</b> (t + 1  | I)               | C - |   | ן ו  |      |      |
| characteristic<br>table | 0<br>1              | 0<br>1      |                       | 0<br>0<br>1<br>1   | 0<br>1<br>0<br>1 | $\begin{array}{c} Q(t) \\ 0 \\ 1 \\ Q'(t) \end{array}$ |                       | 0<br>1                | Q(t)<br>Q'(t)    |                  |     |   |      | -    |      |
|                         |                     |             | <b>Q</b> ( <i>t</i> ) | Q(t +              | 1)               | J                                                      | к                     | <b>Q</b> ( <i>t</i> ) | Q(t + 1)         | τ                |     | + | Г' В | B' A | AA'  |
| excitation<br>table     |                     |             | 0<br>0<br>1<br>1      | 0<br>1<br>0<br>1   |                  | 0<br>1<br>X<br>X                                       | X<br>X<br>1<br>0      | 0<br>0<br>1<br>1      | 0<br>1<br>0<br>1 | 0<br>1<br>1<br>0 |     |   |      | Fi   | g. { |



