
Discrete Mathematics

- 1. [10%] Let $\Sigma = \{a, b, c, x, y\}$. (a) What is $|\Sigma^6|$? (b) How many strings in Σ^* have length at most 6?
- 2. [9%] Let $\Sigma = \{a, b, c\}$, and consider the string w = aabcc. Please list (a) all prefixes, (b) all proper suffixes, and (c) all substrings of *w*.
- 3. [10%] (a) Construct a state diagram for a finite state machine with I = O = {0, 1} that recognizes all strings in the language {11} {0, 1}*{00}, where I is the input alphabet and O is the output alphabet of the machine. (b) Construct a state diagram for a finite state machine that recognizes all strings in {11} {01}*{00}.
- 4. [15%] Let A be a set with |A| = n. (a) How many binary relations on A are reflexive? (b) How many binary relations on A are symmetric? (c) How many binary relations on A are reflexive and symmetric? (d) How many binary relations on A are reflexive but not symmetric? (e) How many binary relations on A are antisymmetric and reflexive?
- 5. [8%] Let *R* be the "(exactly) divides" relation defined on $A = \{1, 3, 5, 6, 7, 11, 12, 35, 385\}$. Please draw the Hasse diagram for the poset (*A*, *R*).
- 6. [10%] (a) If $A = \{1, 2, 3, 4, 5, 6, 7\}$ and R is the equivalence relation on A that induces the partition $A = \{6, 7\} \cup \{1, 2, 4\} \cup \{3, 5\}$, what is R? (b) If R is the equivalence relation on A that induces the partition $A = A_1 \cup A_2 \cup \cdots \cup A_n$ where $n \ge 2$ is a positive integer and $|A_i| = i$ for each i in $\{1, 2, ..., n\}$, then |R| = ?
- 7. [10%] Let $A = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$, and define *R* on *A* by $(x_1, y_1) R (x_2, y_2)$ if $((x_1 + y_1) \mod 5) = ((x_2 + y_2) \mod 5)$ (a) Determine the equivalence class [(1, 1)]and (b) determine the partition of *A* induced by *R*.
- 8. [8%] (a) If A = {1, 2, 3, 4, 5}, how many relations on A are equivalence relations?
 (b) How many of the equivalence relations in part (a) satisfy 1 ∈ [2]?
- 9. [20%] Minimize the two finite state machines defined in Table 7.4 and Figure 7.26, respectively.

Tak	10	

	ν		ω	
	0	1	0	1
<i>s</i> 1	<i>S</i> 4	<i>s</i> ₁	0	1
<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₃	1	0
\$3	<i>s</i> ₁	<i>S</i> 4	1	0
<i>S</i> 4	<i>s</i> 1	\$3	0	1
\$5	<i>s</i> 3	\$3	1	0

[You should show how to get the answers in detail or obtain no credit.]