
Test 1 Algorithms 2014/10/30

1. (10) Prove that
n∑

k=1

1

k
≤ log n + 1.

2. (10) Let f(n) = log(n!) and g(n) = (log(n))!.

(a) Is f(n) ∈ O(g(n))?

(b) Is g(n) ∈ O(f(n))?

3. (10) Let c be a positive number. Show that f(n) = 1 + c + c2 + · · ·+ cn is

(a) Θ(1) if c < 1,

(b) Θ(n) if c = 1,

(c) Θ(cn) if c > 1.

4. (10) Show that log(n!) = Θ(n log n).
(Hint: To show an upper bound, compare n! with nn. To show a lower bound, compare it with (n/2)n/2.)

5. (15) Let a and b be two n-bit integers, and n is very large.

(a) Is it possible to design an algorithm for computing a2 which is asymptotically faster than computing a× b?

(b) Is it possible to design an algorithm for computing a× b which is asymptotically faster than computing a2?

(c) Supposed that someone has shown that a program for computing a2 takes less time than the best program
for computing a× b. How do you explain this?

6. (20) Give asymptotically tight upper bounds T (n) for each of the following recurrences. Justify your answers.

(a) T (n) = 2T (n/2) + n

(b) T (n) = 9T (n/4) + n2

(c) T (n) = T (
√
n) + 1

(d) T (n) = T (n/3) + T (n/5) + n3

7. (20) Consider the following program for computing the greatest common divisor of two positive integers a and b.

while (b > 0) {r = a%b; a = b; b = r;} print(a);

(a) Show that the program will eventually stop for any input a, b > 0.

(b) Show that the number of iterations for the while loop is bounded by O(log2 n).

8. (20) Efficient algorithm for the multiplication of very large integers can be designed using divide and conquer
approach. Let x = xl2

n/2 + xr, and y = yl2
n/2 + yr. Then

xy = (xl2
n/2 + xr)(yl2

n/2 + yr) = xlyl2
n + (xlyr + xryl)2

n/2 + xryr. Note that
xlyr + xryl = (xl + xr)(yl + yr)− xlyl − xryr. We can do it with only 3 multiplications of length n/2. Recursively
apply this strategy, we have: T (n) = 3T (n/2) + O(n). Thus, T (n) is O(nlog2 3), and log23 ≈ 1.5849625 < 2. Let
U(n) be the time required to do the additions, not multiplications. Give a tight bound for U(n) for the divide
and conquer approach described above.

1


