Digital Electronics Spring 2014 Midterm Exam ID#

1. (10%) A cellphone incorporates a 2.4GHz oscillator whose frequency is defined by the resonance frequency of an *LC* tank If the tank capacitance is realized as the *pn* junction of Example 2.15, calculate the change in the oscillation frequency while the reverse voltage goes from 0 to 1.5 V. Assume the circuit operates at 2.4 GHz at a reverse voltage of 0 V, and the junction area is $2500 \ \mu m^2$.

$$f_{res} = \frac{1}{2\pi} \frac{1}{\sqrt{\text{LC}}} , C_j = 0.265 \, fF \, / \, \mu m^2 , \quad C_{j,tot} = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_0}}} , \quad V_0 = 0.73 \, \text{V}$$

Ans:

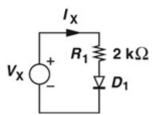
$$jL\omega_{res} = -(jC\omega_{res})^{-1} \qquad f_{res} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

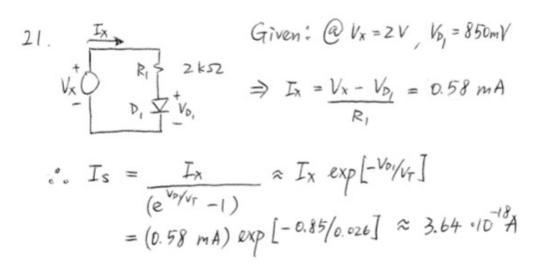
at $V_R = 0$ V and $C_j = 0.265$ fF/ μ m²
 $C_{j,tot} = (V_R = 0) = (0.265$ fF/ μ m²) × (2500 μ m²) = 662.5 fF
 $f_{res} = 2.4$ GHz = $\frac{1}{2\pi} \frac{1}{\sqrt{L \times 662.5}}$, $L = 6.64$ nH
if $V_R = 1.5$ V $C_{j,tot} = \frac{C_{j0}}{\sqrt{1 + \frac{1.5}{0.73}}} \times 2500\mu$ m² = 379fF
 $f_{res}(V_R = 1.5) = \frac{1}{2\pi} \frac{1}{\sqrt{L \times 379}}$ = 3.17GHz

2. (10%). An NMOS device with $\lambda=0.1V^{-1}$ must provide a $g_m r_o$ of 20 with $V_{DS}=1.5V$. Determine the required value of W/L if $I_D=0.5$ mA. Assume $\mu_n C_{ox}=200$ uA/V², and $V_{TH}=0.4$ V. $I_D = \frac{1}{2}\mu_n C_{ox}\frac{W}{L}(V_{GS}-V_{TH})^2$,

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
 $r_o = \frac{1}{\lambda I_D}$
Ans:

36. Given NMOS with $\lambda = 0.1 V^{-1}$ gm/s = 20 $V_{PS} = 1.5 V$ determine W/L if $I_D = 0.5 mA$.


$$\int_{0}^{\infty} = \frac{1}{N I_{D}} = \frac{1}{(0.1 V^{-1})(0.5 mA)} = 20 k\Omega$$


$$\Rightarrow g_m = \frac{20}{20 \, k_2} = \sqrt{2 \, \mu_n C_{0X} \frac{W}{L} I_0}$$

$$\stackrel{\circ}{\sim} \frac{W}{L} = \left(\frac{20}{20 \text{ km}}\right)^2 \frac{1}{2 \text{ UnCox } I_D}$$

$$= \left(\frac{1}{(1 \text{ km})^2}\right)^2 \frac{1}{2 \left(\frac{200 \text{ MA}}{V^2}\right) (0.5 \text{ mA})} \approx 5.$$

3. (10%) Suppose D_I must sustain a voltage 850 mV for $V_X = 2.0$ V. $R_I = 2.0$ k Ω . Calculate the required I_S . $V_T = 26$ mV, $I_D = I_S \exp^{\frac{V_D}{V_T}}$

4. (10%) In the following circuit, determine the value of R_I such that this resistor carries 0.5 mA. Assume $I_S = 5 \times 10^{-16}$ A for each diode. $V_T = 26$ mV, $I_D = I_S \exp^{\frac{V_D}{V_T}}$

$$I_{X} \bigoplus 1 \text{ mA } R_{1} \bigoplus D_{1}$$

$$I_{Y} \bigoplus D_{2}$$

$$I_{Y} \bigoplus R_{1} \bigoplus D_{1}$$

$$I_{X} \bigoplus R_{1} \bigoplus D_{2}$$

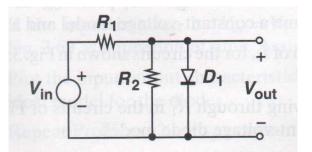
$$I_{X} \bigoplus R_{1} \bigoplus D_{1}$$

$$I_{X} \bigoplus R_{1} \bigoplus D_{2}$$

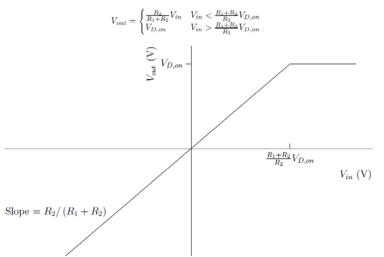
$$I_{X} \bigoplus R_{1}$$

$$I_{X} \bigoplus R_{1} \bigoplus D_{2}$$

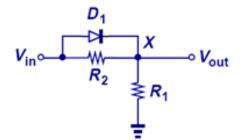
$$I_{X} \bigoplus R_{1}$$

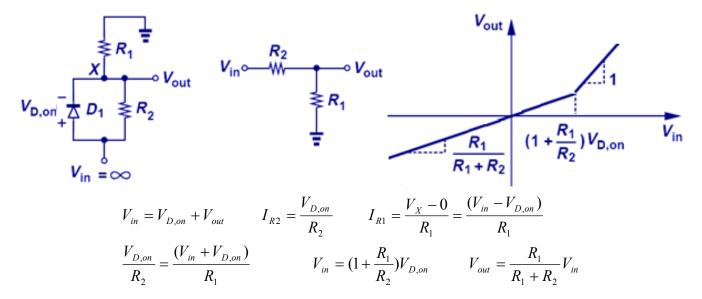

$$I_{X} \bigoplus R_{1} \bigoplus I_{X} - I_{R_{1}} = 0.5 \text{ mA}$$

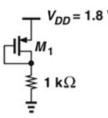
$$I_{X} \bigoplus V_{P_{1}} = V_{D_{2}} = V_{T} \ln \left(\frac{I_{D}}{I_{S}}\right) = 0.026 \ln \left(\frac{0.5 \text{ mA}}{5 \cdot 10^{-16} \text{ A}}\right)$$


$$\approx 0.718 V$$

$$e^{*}e^{*}R_{1} = \frac{V_{R_{1}}}{I_{R_{1}}} = \frac{2 V_{D_{1}}}{I_{R_{1}}} = \frac{2 (0.718V)}{0.5 \text{ mA}} = 2.87 \text{ kS2}$$


5. (10%) Please plot the input/output characteristic of the circuit assuming a constant voltage model (V_{D,on}). Ans:


3.23 (a)


6. (10%) Using the constant voltage mode, plot the input/output characteristic of the following circuit.

Ans:

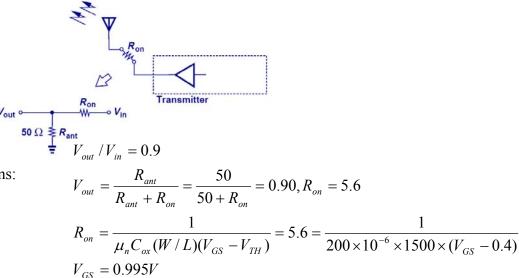
7. (10%) If W/L =10/0.18 and λ =0, determine the operating point of M_1 in the following circuit. $\mu_p C_{ox}$ =100uA/V², and V_{TH} =-0.4V. $I_D = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (|V_{GS}| - |V_{TH}|)^2$

Ans:

(b) Since M_1 is diode-connected, we know it is operating in saturation.

$$|V_{GS}| = |V_{DS}|$$

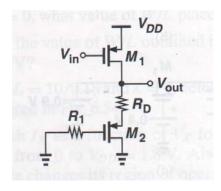
$$V_{DD} - |V_{GS}| = |I_D| (1 \text{ k}\Omega) = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (|V_{GS}| - |V_{TH}|)^2 (1 \text{ k}\Omega)$$

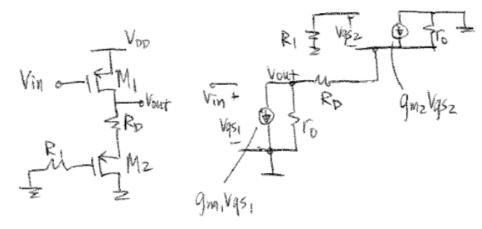

$$|V_{GS}| = |V_{DS}| = \boxed{0.952 \text{ V}}$$

$$|I_D| = \boxed{848 \text{ }\mu\text{A}}$$

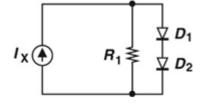
8. (5%) The switch connecting the transmitter to the antenna attenuates the signal by no more than 10%. If $\mu_n C_{ox}=200 \text{uA/V}^2$, and $V_{TH}=0.4 \text{V}$, and the W/L is 1500, determine the minimum required V_{GS} of the switch.

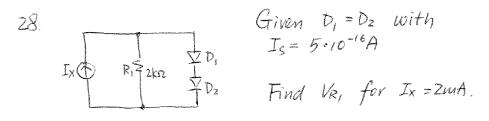
Assume the antenna can be model as a 50 Ω resistor. R_{on}


$$=\frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$


Ans:

9.


10. (5%) Construct the small signal model of circuit, if all transistor operate in saturation and $\lambda \neq 0$.



Ans:

11.(10%) This circuit employs two identical diodes with $I_s = 5 \times 10^{-16}$ A. Calculate the voltage across R_I for $I_X = 2$ mA. Assume $R_I = 2.0$ k Ω .

Current through the diodes = I_D = $I_X - \frac{V_{R_1}}{R_1}$ where V_{R_1} = voltage across R_1

$$\Rightarrow V_{R_1} = 2 \cdot V_T \ln \left(\frac{I_D}{I_S} \right) = 2 \left[V_T \ln \left(\frac{I_X}{I_S} - \frac{V_{R_1}}{I_S R_1} \right) \right]$$

$$V_{R_{i}} = 1.4 V \implies I_{D} = I_{X} - \frac{V_{R_{i}}}{R_{i}} = 2mA - \frac{1.4V}{2k\Omega} = 1.3mA$$
$$\implies V_{R_{i}} = 2V_{T} \ln \left(\frac{I_{D}}{I_{S}}\right)$$
$$= 2(0.026V) \ln \left(\frac{1.3mA}{5 \cdot 10^{-16}A}\right) \approx 1.49 V$$

$$V_{R_{1}} = 1.49V \implies I_{D} = 2mA - \frac{1.49}{2k_{32}} = 1.26 mA$$

$$\implies V_{R_{1}} = 2(0.026V) \left[n \left(\frac{1.26 mA}{5 \cdot 10^{-6} A} \right) \approx 1.48V$$

$$V_{R_{1}} = 1.48V \implies I_{D} = 2mA - \frac{1.48V}{2k_{32}} = 1.26 mA$$

$$\implies V_{R_{1}} = 1.48V$$

. voltage across
$$R_1 = 1.48 V$$