UNIX SYSTEM PROGRAMMING MIDTERM
Spring 2014

The following assumptions can be made throughout the exam:

No variables have been declared other than those shown to be declared in the
specific problem.

The shell is always tcsh.

Any scripts shown have already been chmod-ed and are executable.

In answering the output for the various questions:

- If you believe that a specific problem produces an error message, say “ERROR”.
- If you believe it produces no output, say “NONE”.

- If you believe that there is an empty line, say “EMPTY.”

- If you believe that the last line of output does not advance to the next line, say
“NONEWLINE.”

- If you believe that the output is the same as the input, type “SAME.”

- If you believe that the output freezes waiting for user input, type “FREEZE.”

- If an answer is on several lines, then put your answer on several lines.

For example:

90 echo 1; eecchho 2; echo 4; cat; echo 5
1

ERROR

4

FREEZE

% echo 1; echo ; echo-n 3

1

EMPTY

SNONEWLINE

Some reminders:
The grep -o flag prints only the matching pattern, not the rest of the line.

1.

Using the fewest number of keystrokes, write a single command to flip
the upper and lower case letters. For example:

% echo "aBcDeF GH, ijk." | <your command>

AbCdEf gh, IJK.

2.

We want a short script that will count the number of directories in my
path.

For example, if my path is:

/home/stevewhaga/dirl/dir2/dir3

Then here is the desired behavior:

%./dircount

ul

part a:

Write your script in this format:
% cat dircount
#!/bin/tcsh

| tr -cd | we -

Note that you may only fill in the blanks. The first blank is a command,
the second blank is a parameter, and the third blank is a flag. Note
also that you can answer the 2nd and third blanks, even if you don't
remember the first.

part b:

Redo the script from part a, but this time using the following format:
% cat dircount
#!/bin/tcsh

| tr | we -
Note that, this time, the tr command cannot use any flags.

3. We want a short script that will strip off everything but the
beginning numbers of a line created by grep -n. Note: the file itself
is generic; it can contain any characters (even numbers).

For example, Suppose that we have a file with contents such that:
% grep -n X Y

2:X

8:XX

205:X

Well then, your script will have the following behavior:
% grep -n X Y | ./justnumbers

N o N

05

part a:
Write your script in this format:
% cat justnumbers

#!/bin/tecsh

grep -____

Here, there are two blanks, one for flag(s), the other for parameters(s)

part b:
Redo the script from part a, but this time using the following format:
% cat justnumbers

#!/bin/tcsh

cut -

Here, there are two blanks, one for flag(s), the other for parameters(s)

part c:

Redo the script again, but this time I tell you that the input file has
no numbers in it (other than the numbers at the beginning of each line).
This time, use the following format:

% cat justnumbers

#!'/bin/tcsh

tr -

4. Now we imagine your justnumbers script is placed in your home

directory, with executable permission.

And we change to a new directory,

and then type the following:

[

% 1s

277

cat -n

-1

o

°

o U1 W N

-
Note tha
EMPTY.

What wil
tail

echo

1s
1s
1s
1s
1s
1s
1ls a.
1s "1
echo
cat

grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
set

echo
echo
echo
echo
we

a
ax

O NK X=Jde TR QTOBRHRFWR SO RD QQ O W

*

.. ac a.c b
ac
-n
ac
bF\d
F

EBF

J*L

t this file contains no spaces or tabs, and that line 6 is

1 be the output for each of the following commands:
-n "head -5 ac | wc " ac | head -1
ls 77

W

*c

s ?°

“head -2 ac’

head -2 ac’

a* ac | ~/justnumbers

"a*" ac | ~/justnumbers

"EX*F" ac | ~/justnumbers

"F*$" ac | ~/justnumbers

"AF*" ac | ~/justnumbers

"[*"F]" ac | ~/justnumbers
ac | ~/justnumbers
ac | ~/justnumbers

* ac | ~/justnumbers

* ac | ~/justnumbers

* ac | ~/justnumbers

* ac | ~/justnumbers

\\A\\A* ac | ~/justnumbers

\\\\WW* ac | ~/justnumbers
A\\NN\WN* ac | ~/justnumbers
A\NNWAN* ac | ~/justnumbers
ANAWN\\N* ac | ~/justnumbers
"*' ac | ~/justnumbers
"*' ac | ~/Jjustnumbers
"*' ac | ~/justnumbers
"*" ac ~/justnumbers

B = A; set C grep $C ac
AN

a b" mmon
"can\'t"
"He said,

1s™ | wc

!
=B

’

"Hi" to me."

A ; echo cat ac
= A || echo cat ac
A && echo cat ac
; echo ?
|| echo ?
&& echo ?
echo ?

nn. set
00. set
pp.
aq.
rr.
ss.
tt.
uu.
VV.
ww. set
XxX. set
yy. set =
zz. echo $#T
aaa. echo $?T | echo $7?

bbb. echo 'ab*c' | fgrep -o b*

ccc. echo 'ab*c' | fgrep -o "b*"

ddd. echo '? 2 2?2 2?2 ?' | grep -o "? 2"
eee. echo '"? 2 2 ?2 ?2' | grep "? 2"
fff. echo 'abc' | grep "x*"

I @ w
|

I cocoo®w I

@ ®®® ® 0N
W wWwwww

=H =3 3 |l
Il

\

& echo ?

; echo ST[-2]
3 4); echo S$T[1][3]
3

\
&
(
(
(4); echo $T[O0]

)
12
12

(6]

Now we are in a different directory and we type:
1s

1 2 3 4
cat O

#!/bin/tcsh
echo S$#

% cat 1
#!/bin/tcsh
echo 'S$*!'

% cat 2
#!/bin/tcsh
exit $°?

% cat 3
#!/bin/tcsh
exit $2

% cat 4
#!/bin/tcsh
echo $<

o

(@)

o

What is the output of the following:

a. ls | xargs echo

b. ./*

c. seq "./*°

d. seq 2

e. echo "*" | xargs .\l

f. echo -n "™ ; ./0 “echo "*"°

g. echo -n "" ; ./1 "1s° || echo OR
h. echo -n "" ; ./1 “1s° && echo AND
i. echo -n "" ; ./2 "1s° || echo OR
j. echo -n "" ; ./2 “1s’ && echo AND
k. echo -n "" ; ./3 "1s° || echo OR
1. echo -n "" ; ./3 "1ls° && echo AND
m. ./4 “1ls°

n. ./4 < “1ls°

o. ./0 < “1s°

p. expr 1+2

1s head -1 | xargs expr 1 * 2
1s head -1 | xargs expr 1 *
1ls head -2 | tail -1 | xargs expr '1ls | tail -1 +

\
\
\
expr ‘expr ‘expr 1 + 2° + 37 + 4
ls | tee echo > £ ; 1s > g ; diff -y £ g

C o n B.Q

For this last one (u), note that the syntax of diff -y is to display
the 2 files side-by-side, according to the following syntax:
cat fl

cat f2

diff -y f1 f£2

O X O ocelQ Hh O QO Q O dcQ H Q X O o°

Q Hh 0o Qo

Q th

