
UNIX SYSTEM PROGRAMMING MIDTERM 

Spring 2014 
 

The following assumptions can be made throughout the exam:  

No variables have been declared other than those shown to be declared in the 

specific problem. 

The shell is always tcsh. 

Any scripts shown have already been chmod-ed and are executable. 

 

In answering the output for the various questions: 

- If you believe that a specific problem produces an error message, say “ERROR”.   

- If you believe it produces no output, say “NONE”. 

- If you believe that there is an empty line, say “EMPTY.” 

- If you believe that the last line of output does not advance to the next line, say 

“NONEWLINE.” 

- If you believe that the output is the same as the input, type “SAME.” 

- If you believe that the output freezes waiting for user input, type “FREEZE.” 

- If an answer is on several lines, then put your answer on several lines. 

 

For example:  

% echo 1; eecchho 2; echo 4; cat; echo 5 

1 

ERROR 

4 

FREEZE 

% echo 1; echo ; echo –n 3 

1 

EMPTY 

3NONEWLINE 

  

Some reminders:  

The grep -o flag prints only the matching pattern, not the rest of the line. 

 
1. 

Using the fewest number of keystrokes, write a single command to flip 

the upper and lower case letters. For example: 

% echo "aBcDeF GH, ijk." | <your command> 

AbCdEf gh, IJK. 

 

2. 

We want a short script that will count the number of directories in my 

path. 

For example, if my path is: 

/home/stevewhaga/dir1/dir2/dir3 

Then here is the desired behavior: 

%./dircount 

5 

 

 



part a: 

Write your script in this format: 

% cat dircount 

#!/bin/tcsh 

___ | tr -cd ___ | wc -__ 
 

Note that you may only fill in the blanks. The first blank is a command, 

the second blank is a parameter, and the third blank is a flag. Note 

also that you can answer the 2nd and third blanks, even if you don't 

remember the first. 
 

part b: 

Redo the script from part a, but this time using the following format: 

% cat dircount 

#!/bin/tcsh 

___ | tr ___ | wc -__ 
 

Note that, this time, the tr command cannot use any flags. 

 

3. We want a short script that will strip off everything but the 

beginning numbers of a line created by grep –n. Note: the file itself 

is generic; it can contain any characters (even numbers). 
 

For example, Suppose that we have a file with contents such that: 

% grep -n X Y 

2:X 

8:XX 

205:X 

 

Well then, your script will have the following behavior: 

% grep -n X Y | ./justnumbers 

2 

8 

205 

 

part a: 

Write your script in this format: 

% cat justnumbers 

#!/bin/tcsh 

grep -___  ____ 
 

Here,there are two blanks, one for flag(s), the other for parameters(s) 

 

part b: 

Redo the script from part a, but this time using the following format: 

% cat justnumbers 

#!/bin/tcsh 

cut -___  ____ 
 

Here,there are two blanks, one for flag(s), the other for parameters(s) 

 

part c: 

Redo the script again, but this time I tell you that the input file has 

no numbers in it (other than the numbers at the beginning of each line). 

This time, use the following format: 

% cat justnumbers 

#!/bin/tcsh 

tr -__ ____ 



 

4. Now we imagine your justnumbers script is placed in your home 

directory, with executable permission. And we change to a new directory, 

and then type the following: 

% ls -l 

???  .  ..  *  ac  a.c  b 

% cat -n ac 

     1  -n  

     2  ac 

     3  bF\d 

     4  F 

     5  EBF 

     6 

     7  j*L 

Note that this file contains no spaces or tabs, and that line 6 is 

EMPTY. 

 

What will be the output for each of the following commands: 

a. tail -n `head -5 ac | wc -w` ac | head -1 

b. echo `ls ?` 

c. ls . 

d. ls ... 

e. ls ? 

f. ls * 

g. ls a 

h. ls a* 

i. ls a.*c 

j. ls `ls ?` 

k. echo `head -2 ac` 

l. cat `head -2 ac` 

m. grep -n a* ac | ~/justnumbers 

n. grep -n "a*" ac | ~/justnumbers 

o. grep -n "E*F" ac | ~/justnumbers 

p. grep -n "F*$" ac | ~/justnumbers 

q. grep -n "^F*" ac | ~/justnumbers 

r. grep -n "[^F]" ac | ~/justnumbers 

s. grep -n . ac | ~/justnumbers 

t. grep -n . ac | ~/justnumbers 

u. grep -n \\* ac | ~/justnumbers 

v. grep -n \\\* ac | ~/justnumbers 

w. grep -n \\\\* ac | ~/justnumbers 

x. grep -n \\\\\* ac | ~/justnumbers 

y. grep -n \\\\\\* ac | ~/justnumbers 

z. grep -n \\\\\\\* ac | ~/justnumbers 

aa. grep -n \\\\\\\\* ac | ~/justnumbers 

bb. grep -n \\\\\\\\\* ac | ~/justnumbers 

cc. grep -n \\\\\\\\\\* ac | ~/justnumbers 

dd. grep -n '\*' ac | ~/justnumbers 

ee. grep -n '\\*' ac | ~/justnumbers 

ff. grep -n '\\\*' ac | ~/justnumbers 

gg. grep -n "\\\\*" ac | ~/justnumbers 

hh. set B = A; set C = B ; grep $C ac 

ii. echo \\\\\\  

jj. echo a   b"""" 

kk. echo "can\'t" 

ll. echo "He said, "Hi" to me." 

mm. wc `ls` | wc 



nn. set B = A ; echo cat ac 

oo. set B = A || echo cat ac 

pp. set B = A && echo cat ac 

qq. @ B = A ; echo ? 

rr. @ B = A || echo ? 

ss. @ B = A && echo ? 

tt. @ B = 0 ; echo ? 

uu. @ B = 0 || echo ? 

vv. @ B = 0 && echo ? 

ww. set T = ( * ); echo $T[-2] 

xx. set T = ( 1 2 3 4 ); echo $T[1][3] 

yy. set T = ( 1 2 3 4 ); echo $T[0] 

zz. echo $#T 

aaa. echo $?T | echo $? 

bbb. echo 'ab*c' | fgrep -o b\* 

ccc. echo 'ab*c' | fgrep -o "b*" 

ddd. echo '? ? ? ? ?' | grep -o "? ?" 

eee. echo '? ? ? ? ?' | grep "? ?" 

fff. echo 'abc' | grep "x*" 

 

 

5. Now we are in a different directory and we type: 

% ls 

0  1  2  3  4 

% cat 0 

#!/bin/tcsh 

echo $# 

% cat 1 

#!/bin/tcsh 

echo '$*' 

% cat 2 

#!/bin/tcsh 

exit $? 

% cat 3 

#!/bin/tcsh 

exit $2 

% cat 4 

#!/bin/tcsh 

echo $< 

 

What is the output of the following: 

a. ls | xargs echo 

b. ./* 

c. seq `./*` 

d. seq 2 

e. echo "*" | xargs .\1 

f. echo -n "" ; ./0 `echo "*"` 

g. echo -n "" ; ./1 `ls` || echo OR 

h. echo -n "" ; ./1 `ls` && echo AND 

i. echo -n "" ; ./2 `ls` || echo OR 

j. echo -n "" ; ./2 `ls` && echo AND 

k. echo -n "" ; ./3 `ls` || echo OR 

l. echo -n "" ; ./3 `ls` && echo AND 

m. ./4 `ls` 

n. ./4 < `ls` 

o. ./0 < `ls` 

p. expr 1+2 



q. ls | head -1 | xargs expr 1 * 2 

r. ls | head -1 | xargs expr 1 * 

s. ls | head -2 | tail -1 | xargs expr `ls | tail -1` + 

t. expr `expr `expr 1 + 2` + 3` + 4 

u. ls | tee echo > f ; ls > g ; diff -y f g 

 

For this last one (u), note that the syntax of diff -y is to display 

the 2 files side-by-side, according to the following syntax: 

% cat f1 

b 

x 

d 

f 

g 

% cat f2 

b 

c 

d 

e 

f 

g 

% diff -y f1 f2 

b                                                               b 

x                                                             | c 

d                                                               d 

                                                              > e 

f                                                               f 

g                                                               g 

 

 


