UNIX SYSTEM PROGRAMMING MIDTERM
Spring 2014

The following assumptions can be made throughout the exam:

No variables have been declared other than those shown to be declared in the
specific problem.

The shell is always tcsh.

Any scripts shown have already been chmod-ed and are executable.

In answering the output for the various questions:

- If you believe that a specific problem produces an error message, say “ERROR”.
- If you believe it produces no output, say “NONE”.

- If you believe that there is an empty line, say “EMPTY.”

- If you believe that the last line of output does not advance to the next line, say
“NONEWLINE.”

- If you believe that the output is the same as the input, type “SAME.”

- If you believe that the output freezes waiting for user input, type “FREEZE.”

- If an answer is on several lines, then put your answer on several lines.

For example:

90 echo 1; eecchho 2; echo 4; cat; echo 5
1

ERROR

4

FREEZE

% echo 1; echo ; echo-n 3

1

EMPTY

SNONEWLINE

Some reminders:
The grep -o flag prints only the matching pattern, not the rest of the line.

1.

Using the fewest number of keystrokes, write a single command to flip
the upper and lower case letters. For example:

% echo "aBcDeF GH, ijk." | <your command>

AbCdEf gh, IJK.

2.

We want a short script that will count the number of directories in my
path.

For example, if my path is:

/home/stevewhaga/dirl/dir2/dir3

Then here is the desired behavior:

%./dircount

ul



part a:

Write your script in this format:
% cat dircount
#!/bin/tcsh

| tr -cd | we -

Note that you may only fill in the blanks. The first blank is a command,
the second blank is a parameter, and the third blank is a flag. Note
also that you can answer the 2nd and third blanks, even if you don't
remember the first.

part b:

Redo the script from part a, but this time using the following format:
% cat dircount
#!/bin/tcsh

| tr | we -
Note that, this time, the tr command cannot use any flags.

3. We want a short script that will strip off everything but the
beginning numbers of a line created by grep -n. Note: the file itself
is generic; it can contain any characters (even numbers).

For example, Suppose that we have a file with contents such that:
% grep -n X Y

2:X

8:XX

205:X

Well then, your script will have the following behavior:
% grep -n X Y | ./justnumbers

N o N

05

part a:
Write your script in this format:
% cat justnumbers

#!/bin/tecsh

grep -____

Here, there are two blanks, one for flag(s), the other for parameters(s)

part b:
Redo the script from part a, but this time using the following format:
% cat justnumbers

#!/bin/tcsh

cut -

Here, there are two blanks, one for flag(s), the other for parameters(s)

part c:

Redo the script again, but this time I tell you that the input file has
no numbers in it (other than the numbers at the beginning of each line).
This time, use the following format:

% cat justnumbers

#!'/bin/tcsh

tr -




4. Now we imagine your justnumbers script is placed in your home

directory, with executable permission.

And we change to a new directory,

and then type the following:
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t this file contains no spaces or tabs, and that line 6 is

1 be the output for each of the following commands:
-n "head -5 ac | wc " ac | head -1
ls 77

W

*c

s ?°

“head -2 ac’

head -2 ac’

a* ac | ~/justnumbers

"a*" ac | ~/justnumbers

"EX*F" ac | ~/justnumbers

"F*$" ac | ~/justnumbers

"AF*" ac | ~/justnumbers

"[*"F]" ac | ~/justnumbers
ac | ~/justnumbers
ac | ~/justnumbers

\\* ac | ~/justnumbers

\\\* ac | ~/justnumbers

\\\\* ac | ~/justnumbers

\\\\\* ac | ~/justnumbers

\\A\\A\* ac | ~/justnumbers

\\\\WW\\* ac | ~/justnumbers
A\\NN\WN\\* ac | ~/justnumbers
A\NNWAN\\\* ac | ~/justnumbers
ANAWN\\N\* ac | ~/justnumbers
"\*' ac | ~/justnumbers
"\\*' ac | ~/Jjustnumbers
"\\\*' ac | ~/justnumbers
"\\\\*" ac ~/justnumbers

B = A; set C grep $C ac
AN
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"He said,

1s™ | wc

!
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"Hi" to me."



A ; echo cat ac
= A || echo cat ac
A && echo cat ac
; echo ?
|| echo ?
&& echo ?
echo ?

nn. set
00. set
pp.
aq.
rr.
ss.
tt.
uu.
VV.
ww. set
XxX. set
yy. set =
zz. echo $#T
aaa. echo $?T | echo $7?

bbb. echo 'ab*c' | fgrep -o b\*

ccc. echo 'ab*c' | fgrep -o "b*"

ddd. echo '? 2 2?2 2?2 ?' | grep -o "? 2"
eee. echo '"? 2 2 ?2 ?2' | grep "? 2"
fff. echo 'abc' | grep "x*"
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Now we are in a different directory and we type:
1s

1 2 3 4
cat O

#!/bin/tcsh
echo S$#

% cat 1
#!/bin/tcsh
echo 'S$*!'

% cat 2
#!/bin/tcsh
exit $°?

% cat 3
#!/bin/tcsh
exit $2

% cat 4
#!/bin/tcsh
echo $<

o

(@)

o

What is the output of the following:

a. ls | xargs echo

b. ./*

c. seq "./*°

d. seq 2

e. echo "*" | xargs .\l

f. echo -n "™ ; ./0 “echo "*"°

g. echo -n "" ; ./1 "1s° || echo OR
h. echo -n "" ; ./1 “1s° && echo AND
i. echo -n "" ; ./2 "1s° || echo OR
j. echo -n "" ; ./2 “1s’ && echo AND
k. echo -n "" ; ./3 "1s° || echo OR
1. echo -n "" ; ./3 "1ls° && echo AND
m. ./4 “1ls°

n. ./4 < “1ls°

o. ./0 < “1s°

p. expr 1+2



1s head -1 | xargs expr 1 * 2
1s head -1 | xargs expr 1 *
1ls head -2 | tail -1 | xargs expr '1ls | tail -1 +

\
\
\
expr ‘expr ‘expr 1 + 2° + 37 + 4
ls | tee echo > £ ; 1s > g ; diff -y £ g

C o n B.Q

For this last one (u), note that the syntax of diff -y is to display
the 2 files side-by-side, according to the following syntax:
cat fl

cat f2

diff -y f1 f£2
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