Discrete Mathematics

[12%] Let Σ = {x, y, z}. (a) How many strings in Σ* have length 5? (b) How many strings in Σ* have length 5 and a prefix zyx. (c) List all proper suffixes of string xxyyzz. (d) List

all substrings of string xyzxyz.

- 2. [10%] Construct a state diagram for a finite state machine with I = O = {0, 1} that recognizes all strings in the language {0, 1}*{01}{0, 1}*{01}, where I is the input alphabet and O is the output alphabet of the machine.
- 3. [10%] Construct a state diagram for a finite state machine with $I = O = \{0, 1\}$ that recognizes all strings with odd 1's.
- 4. [18%] Let *B* be a set with |B| = m. (a) How many binary relations on *B* are reflexive? (b) How many binary relations on *B* are symmetric? (c) How many binary relations on *B* are reflexive but not symmetric? (d) How many binary relations on *B* are neither reflexive nor symmetric? (e) How many binary relations on *B* are antisymmetric? (f) How many binary relations on *B* are symmetric?
- 5. [10%] Let *R* be the "(exactly) divides" relation defined on $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Please draw the Hasse diagram for the poset (*A*, *R*).
- 6. [10%] If A = {1, 2, 3, 4, 5, 6} and R is the equivalence relation on A that induces the partition A = {1, 2, 3} ∪ {4} ∪ {5, 6}, what is R?
- 7. [10%] Let $A = \{0, 1, 2, 3, 4, 5\} \times \{0, 1, 2, 3, 4, 5\}$, and define *R* on *A* by $(x_1, y_1) R (x_2, y_2)$ if $x_1 + y_1 = x_2 + y_2$. (a) Determine the equivalence class [(2, 3)] and (b) Determine the partition of *A* induced by *R*.
- 8. [20%] Minimize the two finite state machines defined in Table 7.1 and Table 7.4, respectively.

Table 7.1

	v		ω	
	0	1	0	1
<i>s</i> ₁	<i>s</i> ₄	<i>S</i> 3	0	1
<i>s</i> ₂	\$5	<i>s</i> ₂	1	0
\$3	<i>s</i> ₂	<i>S</i> 4	0	0
<i>S</i> 4	\$5	\$3	0	0
\$5	<i>s</i> ₂	\$5	1	0
<i>s</i> ₆	s_1	<i>S</i> 6	1	0

Table 7.4							
	ν		ω				
	0	1	0	1			
<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃ <i>s</i> ₄ <i>s</i> ₅	\$4 \$3 \$1 \$1 \$3	\$1 \$3 \$4 \$3 \$3	0 1 1 0	1 0 0 1 0			

[You should show how to get the answers in detail or obtain no credit.]