國立中山大學 101 學年度第一學期資工系組合語言與微處理機期中考試題

學號: 姓名:

一、選擇與是非題(每題3分,21分)

- () 1. 下列何者不是精簡指令集電腦(RISC)的特性? ① fixed instruction size with few formats ② pipelined execution ③ good code density ④ load-store architecture。
- () 2. 下列何者不是 ARM architecture 的特性? ① conditional execution of every instruction ② a load-store architecture ③ 3-address instructions ④ single-cycle execution of all instructions。
- () 3. 下列那一個指令不會設定 conditional codes? @MOVS @SBC @CMP @TST。
- () 4. 撰寫 ARM 的 user-level program 時,不會用到下列哪一個 register? ① r0~r14 ② r15 ③ SPSR (Saved program status register) ④ CPSR (current program status register)。
-) 5. 在 5-stage pipeline ARM organization 中的 forwarding paths 可以直接將 ALU 或是 Data cache 的輸出值在下一個 clock cycle 直接傳送至 ①Register bank ②ALU 的輸入③Data cache ④以上皆是。
- () 6. 執行 ASR 指令時,左邊 (the most significant end) 空出的位元會被填入 zeros。
- () 7. Multiple register transfer addressing modes 中的 STMIA 與 STMEA 指令代表相同的意義。

二、問答題(82分)

1. Fill the following output controls signals used in MU0 (Fig. 1). The enable signal like ACCce, PCce is active high. If RnW equals 1, the memory will be read. (10%)

Inputs						Outputs									
Instruction	Opcode	Reset	Ex/ft	ACCz	ACC15	Asel	Bsel	ACCce	PCce	IRce	ACCoe	ALUfs	MEMrq	RnW	Ex/ft
LDA S	0000	0	0	Х	Х						0	=B			1
	0000	0	1	Χ	Х	0	0	0	1	1	0	B+1	1	1	0
ADD S	0010	0	0	Х	Х						0	A+B			1
	0010	0	1	Х	Χ	0	0	0	1	1	0	B+1	1	1	0
JMP S	0100	0	Х	Х	Х						0	B+1			0

- 2. What is the addressing mode? Explain the following addressing modes and write down an ARM instruction with the addressing mode: Immediate addressing, Base plus offset addressing, and Base plus scaled index addressing. (8%)
- **3.** Please explain the meaning of the following ARM instructions. (16%)

(1) ADD r0, r0, r0, LSL #1

(2) ADDS r2, r2, r0

RSB r0, r0, r0, LSL #3

ADC r3, r3, r1

(3) LDR r0, [r1], #4 STMFD r13!, {r2-r9} (4) CMP r0, #3 ADDNE r1, r1, r0

4. Find out if the following instruction format is correct or not. If incorrect, point out the problem. (16%)

(1) LDMFB r1!, {r5, r4, r9}

(2) ADD r3, r5, #1023

(3) MOVS r4, r4, RRX #2

(4) SUB r1, r2, r3, LSL #32

- **5.** Please indicate the datapath activities for the different type of instructions in Fig. 2. (10%)
- **6.** For the following C-expression: if((r0==r1) && (r2==r3)) r4++;
 - (1) Write down the corresponding ARM code without using the conditional execution. (But you can still use conditional branches.) (6%)
 - (2) Write down the corresponding ARM code using the minimum number of instructions. (6%)
- 7. Please briefly explain the type of ARM exceptions, and ARM architecture how to handle an exception (including exception entry and exception return). (10%)

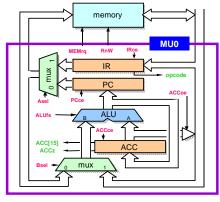
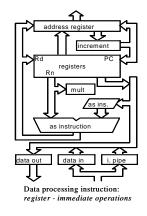
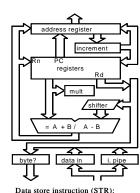




Fig. 1

Data store instruction (STR):

2nd cycle - store data & auto-index

Fig. 2(a) Fig. 2(b)