
Design and Implementation of a Compiler
Final Exam
Spring 2012

1. True or False
a. _____ A DFA is more efficient to use for parsing than a NFA

b. _____ A DFA is more efficient to use for parsing than a recursive descent parser

c. _____ Every sentence of a context free language is a sentential form of the language

d. _____ DFA’s are more efficient to create from regular expressions than NFA’s

e.______ Any ambiguous grammar will produce conflicts in a LALR(1) parser

f. ______ A DFA has at most one edge leaving each state

g. ______ LL parsers cannot tolerate right-recursive grammar rules

h. ______ LR parsers cannot tolerate right-recursive grammar rules

i. ______ Every regular language is a context free language

j. ______ In an unambiguous grammar, each sentence has exactly one derivation starting from the start symbol

k. ______ A right-sentential form must end with a terminal symbol

l. _______ A left-sentential form must begin with a nonterminal symbol

m. ______ Equivalent grammars define the same language

n. ______ LR(1) grammars are more powerful than LL(1) grammars

o. ______ SLR(1) grammars are more powerful than SLR(0) grammars

p. ______ Yacc generates LL(1) parsers

q. ______ The scope of a variable is only the range of statements over which it is visible

r. ______ Scopes may be nested

s. ______ Does there exist a grammar that is LR(1) and is LALR(2) and is SLR(3), but which is not LALR(1)?

r. ______ Does there exist a grammar that is LR(1) and is LALR(2) and is SLR(3), but which is not LALR(1) and

 is not SLR(2)?

u. ______ The scope of a global variable is the entire range of program statements

v. ______ The lifetime of a static-declared local function variable is the entire range of program execution cycles

w. ______ If LR(x) is defined to mean the set of all languages that can be representable by an LR grammar with x

 look-ahead, then the following condition holds: LR(0)⊂LR(1)⊂…⊂LR(k)⊂LR(k+1)

x. ______ The back end converts the standardized IR into machine code for some target machine.

y. ______ Proving the ambiguity of a general BNF grammar can be done by giving an example.

z. ______ Proving the non-ambiguity of a general BNF grammar is an NP-complete problem

aa. _____ Yacc can prove the non-ambiguity of a grammar without requiring an NP-complete algorithm

bb. _____ Yacc can handle ambiguity because it is an LALR(1) parser

cc. ______ An item in this form: “A→ .X1X2…Xj” represents a prediction

dd. ______ LR(1) grammars exist for virtually all programming language grammars

2.
 Consider the following code: And consider the
 LD R0, y following peephole rules:
 ADD R0, R0, z

 ST x, R0 MUL R, R, #2→ SHL R, #1
 LD R0, b
 ADD R0, R0, c ST addr, R → ST addr, R
 ST a, R0 ST addr, R
 LD R0, a
 ADD R0, R0, e ST addr, R → ST addr, R
 ST d, R0 LD R, addr

Write the final code, after peephole optimization.

3. Consider the following tree:

 a. Is it a parse tree or an abstract syntax tree?

 b. circle handle in this tree

 c. If it is a parse tree, draw the AST. Or, if it as an AST, draw the parse tree

4a. C-style comments cannot be nested; they begin with a /* and continue
 through the next occurrence of a */.

For example, consider the string: "*/*/ /* /*/*/" So, where does the comment
begin and end? Well it goes form the first "/*" (which is here: */*/ /* /*/*/), up to
the first "*/" that comes after it (which is here: */*/ /* /*/*/). So, even though
there was another “/*” inside (which was here: */*/ /* /*/*/), yet there is not
nesting, so the second “*/” (which was here: */*/ /* /*/*/) is NOT part of the
comment.

Using the syntax of lex, write down a regular expression that
correctly matches to C-style comments; or explain clearly why it
cannot be done with such a regular expression.

b. Pascal comments can be nested; they begin with the sequence of two

characters: (* and continue through the matching occurrence of the
sequence of two characters *).

For one example, the following string "*(*) (*)*)*)" is a “*” followed by two
nested comments: "*(*) (*)*)*)".

Using the syntax of lex, write down a regular expression that
correctly matches to Pascal-style comments; or explain clearly why
it cannot be done with such a regular expression.

5. Consider the following program:
int w=1, x=1,y=1,z=1;

void main()
{ int x=2;y=2;

 void f2(int w, int z)
 { int x=3;z=3;

 void f3()
 { int w=4;z=4;
 printf(“%d%d%d%d\n”,w,x,y,z);
 }//end of f3()

 void f4()
 { int w=5;
 { int w =6;
 z=2;
 }
 printf(“%d%d%d%d\n”,w,x,y,z);
 } //end of f4()

 // body of f2() begins here
 f3();
 f4();
 printf(“%d%d%d%d\n”,w,x,y,z);
 z = 8;
 } //end of f2()

 // body of main() begins here
 printf(“%d%d%d%d\n”,w,x,y,z);
 f2(w,z);
 printf(“%d%d%d%d\n”,w,x,y,z);
} //end of main()

a. List the output that you would expect
to see when this program is run.

b. Draw the contents of the stack (in the

way described in the lecture, and
with the stack growing upwards) at
the point where f4() is about to
execute its return. In your drawing, it
should be clear where each function’s
activation record (ie, stack frame) is,
and it should be clear where each
variable is.

Draw your stack in this space

6. Consider the following sets of items. Uppercase letters are nonterminals;
lowercase letters are terminals.

a. Which of those sets cannot be a LR(0) parser state obtained from a CFG
 using the canonical LR(0) construction?

b. For those sets above that can be LR(0) parser states: With no lookahead,
 which states will have shift-reduce conflicts?

c. For those sets above that can be LR(0) parser states: With no lookahead,
 which states will have reduce-reduce conflicts?

d. No SLR(1) parser state ever has a “shift-shift” conflict. With reference to
 the basic ideas behind what LR parser states are for, briefly but clearly
 explain why.

7. Consider the following augmented grammar, and partially filled SLR(1)
tables. Fill in the tables for states 0 and 5. (All other states have already been
filled in appropriately.)

8. Consider the following SLR(1) table and grammar

The input string to parse is “id + (id) * id”. Show the stack and input at each step of the
parse. For each step, clearly indicate the action: for shifts, indicate what symbol was
shifted and the new state, and for reductions, indicate which rule was used and the new
state.

9. In this problem, we will explore how several different LR parsing
 algorithms handle or fail to handle a particular grammar:

S → X
X → DE
D → PD
D → ε
E → QE
E → ε
P → id id
Q → id = id

Below is an LR(0) automaton for this language.
We've numbered the states for you.
The terminals in this grammar are:
 id = $, where $ is the end-of-input symbol.

a. This grammar is not LR(0). Why not?

b. Is this grammar SLR(1)? If so, why? If not, why not?

c. Create the augmented LALR(1) grammar for this language Showing your
 steps and showing the result.

d. Compute the FOLLOW sets for each nonterminal in the LALR(1)-augmented
 grammar. Show your result below (but the work is not necessary.

e. Is this grammar LALR(1)? If so, use your answers from (c) and (d) to prove
why. If not, use your answers from (c) and (d) to prove why not. (Even if
you already know for a fact whether this grammar is LALR(1) or not, you
must use the results from the last two problems to back up your claim.)

