
Discrete Mathematics

- 1. [10%] Let $\Sigma = \{a, b, c\}$. (a) What is $|\Sigma^4|$? (b) How many strings in Σ^* have length at most 4?
- 2. [15%] Let $\Sigma = \{a, b, c\}$, and consider the string w = abbcc. Please list (a) all proper prefixes, (b) all suffixes, and (c) all proper substrings of *w*.
- 3. [10%] Construct a state diagram for a finite state machine with $I = O = \{0, 1\}$ that recognizes all strings in the language $\{0, 1\}^*\{00\} \cup \{0, 1\}^*\{11\}$, where *I* is the input alphabet and *O* is the output alphabet of the machine.
- 4. [15%] Let *A* be a set with |*A*| = *n*. (a) How many binary relations on *A*? (b) How many binary relations on *A* are reflexive? (c) How many binary relations on *A* are symmetric? (d) How many binary relations on *A* are reflexive but not symmetric? (e) How many binary relations on *A* are antisymmetric?
- 5. [10%] Let *R* be the "(exactly) divides" relation defined on $A = \{2, 3, 5, 6, 7, 11, 12, 35, 385\}$. Please draw the Hasse diagram for the poset (*A*, *R*).
- 6. [10%] If $A = \{1, 2, 3, 4, 5\}$ and *R* is the equivalence relation on *A* that induces the partition $A = \{1, 2\} \cup \{3, 4\} \cup \{5\}$, what is *R*?
- 7. [10%] Let $A = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$, and define *R* on *A* by $(x_1, y_1) R (x_2, y_2)$ if $x_1 + y_1 = x_2 + y_2$. (a) Determine the equivalence class [(2, 4)] and (b) Determine the partition of *A* induced by *R*.
- 8. [20%] Minimize the two finite state machines defined in Table 7.4 and Figure 7.26, respectively.

Table 7.4

	V		ω	
	0	1	0	1
s_1 s_2	<i>s</i> 4 <i>s</i> 3	s ₁ s ₃	01	1 0
\$3 \$4	<i>s</i> 1 <i>s</i> 1	54 53	10	0 1
\$5	\$3	<i>S</i> 3	1	0

[You should show how to get the answers in detail or obtain no credit.]