Department of Computer Science and Engineering National Sun Yat-sen University Second Semester of 2023 PhD Qualifying Exam

Subject: Probability
Fill out the indexed blanks (5 points/blank) in the answer sheet, e.g. \qquad (1) 50 .

1. Suppose the probability of heads of a biased coin is $\frac{1}{3}$. Let A be the number of flips until the first appearance of a Head immediately followed by a Tail. Let B be the number of flips until the first appearance of 2 consecutive Heads.

$$
\begin{aligned}
& \mathbf{E}[A]=1 \\
& \mathbf{E}[B]=2
\end{aligned}
$$

2. Romeo and Juliet have a date, for which each arrives with a delay between 0 and 1 hour, with all pairs of delays being equally likely. Romeo waits at most 30 minutes and Juliet waits at most 20 minutes.
(a) The probability that they meet is \qquad
(b) Suppose they meet. The probability that Romeo arrives first is 4.
3. 5 persons mix their hats in a box and each picks one hat randomly. Let N be the number of person(s) picking own hat(s).

$$
\begin{aligned}
& \mathbf{E}[N]=5 \\
& \mathbf{E}\left[N^{2}\right]=6
\end{aligned}
$$

4. Fill in $>,=$, or $<$. Consider $X \sim \mathbf{U n i}(1,4)$ (uniform in $(1,4)$).

$$
\begin{gathered}
\mathbf{E}[\log X] \bigcirc \log (\mathbf{E}[X]) \\
\mathbf{E}\left[X^{2}\right](\mathbf{E}[X])^{2}
\end{gathered}
$$

5. $X \sim \mathbf{U n i}(0,2)$ and $Y \sim \mathbf{U n i}(0,2)$ are independent. Consider $S=X+Y$ and $Z=\max (X, Y)$.
(a) $\operatorname{var}(S)=9$.
(b) $f_{Z}(z)$ (the probability density function of Z) at $z=1$ is
6. $X \sim \mathbf{U n i}(-1,2)$ and $Y=g(X)$ where

$$
g(x)= \begin{cases}1, & \text { if } x \leq 1 \\ 2, & \text { if } x>1\end{cases}
$$

(a) $\mathrm{E}[Y]=11$.
(b) $\mathrm{E}[\mathrm{E}[X \mid Y]]=12$.
7. X is a continuous random variable and $Y=F(X)$ where

$$
F(x)=P(X \leq x)
$$

(a) $P(Y>1)=13$.
(b) $P\left(-\log _{e} Y>1\right)=14$.
8. $X \sim \operatorname{Exp}(2)$ and $Y \sim \operatorname{Exp}(2)$ are independent exponential random variables with parameter 2 . Consider $T_{1}=\min (X, Y)$ and $T_{2}=\max (X, Y)$.

$$
\begin{aligned}
& \mathbf{E}\left[T_{1}\right]=15 \\
& \operatorname{var}\left(T_{2}\right)=16
\end{aligned}
$$

9. $X \sim \mathbf{U n i}(1,2)$ and $Y \sim \mathbf{U n i}(1,2)$ are independent, and $Z=|X-Y|$.

$$
\begin{gathered}
\mathbf{E}[Z \mid Y]=17 \\
\mathbf{E}[Z]=18
\end{gathered}
$$

10. $X \sim \mathbf{U n i}(0,1)$ and $Y \sim \mathbf{U n i}(0,1)$ are independent.

$$
\begin{aligned}
& P\left(\frac{Y}{3 X}<1\right)=19 \\
& P\left(\frac{2 Y}{X}<1\right)=20
\end{aligned}
$$

