Department of Computer Science and Engineering National Sun Yat-sen University Second Semester of 2023 PhD Qualifying Exam

Subject: Probability

Fill out the indexed blanks (5 points/blank) in the answer sheet, e.g. $\begin{pmatrix} 1 \end{pmatrix}$ 50 .

1. Suppose the probability of heads of a biased coin is $\frac{1}{3}$. Let A be the number of flips until the first appearance of a Head immediately followed by a Tail. Let B be the number of flips until the first appearance of 2 consecutive Heads.

$$\mathbf{E}[A] = \underbrace{1}\\ \mathbf{E}[B] = \underbrace{2}$$

- 2. Romeo and Juliet have a date, for which each arrives with a delay between 0 and 1 hour, with all pairs of delays being equally likely. Romeo waits at most 30 minutes and Juliet waits at most 20 minutes.
 - (a) The probability that they meet is (3).
 - (b) Suppose they meet. The probability that Romeo arrives first is (4).
- 3. 5 persons mix their hats in a box and each picks one hat randomly. Let N be the number of person(s) picking own hat(s).

$$\mathbf{E}[N] = \underline{(5)}$$
$$\mathbf{E}[N^2] = \underline{(6)}$$

4. Fill in >, =, or <. Consider $X \sim \text{Uni}(1,4)$ (uniform in (1,4)).

$$\mathbf{E}[\log X] (7) \log(\mathbf{E}[X])$$
$$\mathbf{E}[X^2] (8) (\mathbf{E}[X])^2$$

- 5. $X \sim \text{Uni}(0, 2)$ and $Y \sim \text{Uni}(0, 2)$ are independent. Consider S = X + Yand $Z = \max(X, Y)$.
 - (a) $\operatorname{var}(S) = 9$.
 - (b) $f_Z(z)$ (the probability density function of Z) at z = 1 is (10).

6. $X \sim \mathbf{Uni}(-1, 2)$ and Y = g(X) where

$$g(x) = \begin{cases} 1, & \text{if } x \le 1\\ 2, & \text{if } x > 1 \end{cases}$$

(a)
$$\mathbf{E}[Y] = \underbrace{(1)}_{.}$$

(b) $\mathbf{E}[\mathbf{E}[X|Y]] = \underbrace{(12)}_{.}$

7. X is a continuous random variable and Y = F(X) where

$$F(x) = P(X \le x)$$

(a)
$$P(Y > 1) = \underbrace{13}_{.}$$

(b) $P(-\log_e Y > 1) = \underbrace{14}_{.}$

8. $X \sim \text{Exp}(2)$ and $Y \sim \text{Exp}(2)$ are independent exponential random variables with parameter 2. Consider $T_1 = \min(X, Y)$ and $T_2 = \max(X, Y)$.

$$\mathbf{E}[T_1] = \underbrace{15}$$
$$\mathbf{var}(T_2) = \underbrace{16}$$

9. $X \sim \text{Uni}(1,2)$ and $Y \sim \text{Uni}(1,2)$ are independent, and Z = |X - Y|.

$$\mathbf{E}[Z|Y] = \underbrace{(17)}_{\mathbf{E}[Z]}$$
$$\mathbf{E}[Z] = \underbrace{(18)}_{\mathbf{E}[Z]}$$

10. $X \sim \mathbf{Uni}(0, 1)$ and $Y \sim \mathbf{Uni}(0, 1)$ are independent.

$$P\left(\frac{Y}{3X} < 1\right) = \underline{(19)}$$
$$P\left(\frac{2Y}{X} < 1\right) = \underline{(20)}$$